Higher Maths
Trigonometry

 Our generous sponsors 

Course content

  • Nat 5 trig graphs, trig equations and trig identities are assumed
  • Applying the addition formulae and/or double angle formulae
  • Converting \(a\tiny\ \normalsize cos x+b\,sin x\) to \(k\,cos(x\pm \alpha)\) or \(k\,sin(x\pm\alpha), k\gt 0\)
  • Solving trig equations in degrees or radians, including those involving the wave function or trig formulae or identities, in a given interval
  • See also: trigonometry work within the Higher Functions topic.

Textbook page references

  • Zeta Higher Mathematics pp.112-148
  • Heinemann Higher Maths pp.52-68, 192-209 and 309-322
  • TeeJay Higher Maths pp.48-58, 121-130 and 156-160

Find a Higher Maths tutor

Do you need a tutor for Higher Maths?
Click here to find a tutor in your area. 

×

Addition formulae

\(sin (A\pm B)=sin\,A\,cos\,B\pm cos\,A\,sin\,B\)
\(cos (A\pm B)=cos\,A\,cos\,B\mp sin\,A\,sin\,B\)

Double angle formulae

\(sin\,2A=2\,sin\,A\,cos\,A\)
\(cos\,2A=cos^{2}\,A-sin^{2}\,A\)
\(\phantom{cos\,2A}=2\,cos^{2}\,A-1\)
\(\phantom{cos\,2A}=1-2\,sin^{2}\,A\)

Exact values

\(x^\circ\) \(0^\circ\) \(30^\circ\) \(45^\circ\) \(60^\circ\) \(90^\circ\)
\( x\ \small\textsf{rad}\normalsize \) \(0\) \(\frac{\pi}{6} \) \(\frac{\pi}{4} \) \(\frac{\pi}{3} \) \(\frac{\pi}{2} \)
\(sin\,x\) \(0\) \(\frac{1}{2}\) \(\frac{1}{\sqrt{2}}\) \(\frac{\sqrt{3}}{2}\) \(1\)
\(cos\,x \) \(1\) \(\frac{\sqrt{3}}{2}\) \(\frac{1}{\sqrt{2}}\) \(\frac{1}{2}\) \(0\)
\(tan\,x\) \(0\) \(\frac{1}{\sqrt{3}}\) \(1\) \(\sqrt{3}\) \(-\)

Example 1 (non-calculator)

Find the exact value of \(cos\,75^\circ\).

Example 2 (non-calculator)

Find the exact value of \(sin\,195^\circ\).

Example 3 (non-calculator)

Given that \(sin\,x=\frac{5}{13}, 0\lt x\lt\frac{\pi}{2},\) find the exact value of \(sin\,2x.\)

Recommended textbook

Zeta Maths: Higher Mathematics 
 Best price, direct from the publisher

Example 4 (non-calculator)

Given that \(tan\,2x=\frac{4}{3}, 0\lt x\lt\frac{\pi}{4},\) find the exact value of \(cos\,2x\) and hence find the exact value of \(cos\,x.\)

Example 5 (non-calculator)

Given that \(cos\,2x=\frac{12}{13}, 0\lt x\lt\frac{\pi}{4},\) find the exact value of \(tan\,x.\)

Example 6 (non-calculator)

Given that \(0\!\lt\!x\lt\!45^\circ\) and \(sin\,x=\frac{3}{5}\small,\) determine the exact values of:
(a)  \(cos\,x\)
(b)  \(sin\,2x\)
(c)  \(cos\,2x\)
(d)  \(cos\,3x\)
(e)  \(sin\,3x\)

Revision guides

How to Pass Higher Maths 
BrightRED Higher Maths Study Guide 

Example 7 (non-calculator)

Solve \(cos\,2x=sin\,x\) for \(0\leq x \lt 2\pi.\)

Example 8 (non-calculator)

Solve \(2\,cos\,2x^\circ+1=0\) for \(0\leq x \lt 360.\)

Example 9 (non-calculator)

Solve \(2\,cos^2\,x^\circ=1\) for \(0\leq x \lt 360.\)

Practice papers

Essential Higher Maths Exam Practice 
Higher Practice Papers: Non-Calculator 
Higher Practice Papers: Calculator 

Example 10 (non-calculator)

SQA Higher Maths 2019 Paper 1 Q15

(a) Solve the equation \(sin\,2x^\circ+6\,cos\,x^\circ=0\) for \(0\leq x \lt 360.\)
(b) Hence solve \(sin\,4x^\circ+6\,cos\,2x^\circ=0\) for \(0\leq x \lt 360.\)

Example 11 (calculator)

SQA Higher Maths 2021 Paper 2 Q8

Solve the equation \(2\,sin\,(3x-60)^\circ+1=0,\) \(0\leq x \lt 180.\)

Example 12 (calculator)

SQA Higher Maths 2023 Paper 2 Q7

Solve the equation \(sin\,x^\circ+2=3\,cos\,2x^\circ\) for \(0\leq x \lt 360.\)

Stationery supplies

Pukka Pad: A4 squared notepads 
Uni-ball Eye: fine-tip rollerball pens 

Example 13 (non-calculator)

Express \(\sqrt{3}\,cos\,x^\circ+sin\,x^\circ\) in the form \(k\,cos(x-a)^\circ\) where \(k\gt 0\) and \(0\lt a \lt 360.\)

Example 14 (calculator)

Express \(2\,cos\,x^\circ-3sin\,x^\circ\) in the form \(k\,cos(x-a)^\circ\) where \(k\gt 0\) and \(0\lt a \lt 360.\)

Example 15 (calculator)

Express \(5\,sin\,x^\circ-2\,cos\,x^\circ\) in the form \(k\,cos(x+a)^\circ\) where \(k\gt 0\) and \(0\lt a \lt 360.\)

Scientific calculators

Casio FX-85GTCW scientific calculator 
Casio FX-991CW advanced calculator 

Example 16 (non-calculator)

Express \(sin\,x-\sqrt{3}\,cos\,x\) in the form \(k\,sin(x+a)\) where \(k\gt 0\) and \(0\lt a \lt 2\pi.\)

Example 17 (calculator)

Express \(-2sin\,x+7\,cos\,x\) in the form \(k\,sin(x-a)\) where \(k\gt 0\) and \(0\lt a \lt 2\pi.\)

Example 18 (calculator)

Express \(3\,cos\,x^\circ+sin\,x^\circ\) in the form \(k\,cos(x-a)^\circ\) where \(k\gt 0\) and \(0\lt a \lt 360,\) and hence state:
(i)  the maximum value and the value of \(0\leq x \lt 360\) at which it occurs
(ii)  the minimum value and the value of \(0\leq x \lt 360\) at which it occurs.

Books for teachers

Jo Boaler: Mathematical Mindsets 
Craig Barton: Tips for Teachers 

Example 19 (calculator)

Solve \(-3\,cos\,x^\circ+2\,sin\,x^\circ=-1,\) where \(0\leq x \lt 360.\)

Example 20 (calculator)

Solve \(5\,sin\,2x-4\,cos\,2x=3,\) where \(0\leq x \lt 2\pi.\)

Example 21

SQA Higher Maths 2018 Specimen P1 Q11

Show that \( \large\frac{sin\,2x}{2\,cos\,x}\normalsize - sin\,x\,cos^2\,x = sin^3\,x\small,\) where \(0\lt x \lt \frac{\pi}{2}\small.\)

Need a Higher Maths tutor?

Just use this handy little widget and our partner Bark.com will help you find one.

Past paper questions

Addition and double angle formulae:
Specimen Paper 1 Q12
2015 Paper 1 Q10
2015 Paper 2 Q7
2015 Paper 2 Q9
2016 Paper 1 Q13
2018 Paper 1 Q13
2019 Paper 1 Q13
2021 Paper 1 Q5
2022 Paper 1 Q7
2023 Paper 1 Q4
2023 P1 Q13 (with functions)
Trigonometric identities:
Specimen Paper 2 Q11
2015 P2 Q7 (with integration)
2016 P2 Q11 (with differentiation)
2017 P2 Q11(a) (with differentiation)
2019 P1 Q17 (with integration)
2021 Paper 2 Q10 (with integration)
The wave function:
Specimen Paper 2 Q8
2015 Paper 2 Q9
2016 Paper 2 Q8(a)
2017 Paper 1 Q14(a)
2018 Paper 2 Q8
2019 Paper 2 Q6(a)
2021 Paper 2 Q5
2022 Paper 2 Q3(a)
2023 Paper 2 Q9
Trigonometric equations:
Specimen Paper 1 Q14
Specimen Paper 2 Q8
2015 Paper 2 Q9
2016 Paper 2 Q8(b)
2017 Paper 2 Q6
2018 Paper 2 Q6 (with functions)
2019 Paper 1 Q15
2019 Paper 2 Q6(b)
2021 Paper 2 Q8
2022 Paper 1 Q9
2022 Paper 2 Q3(b)
2023 Paper 2 Q7
Trigonometric graphs:
2015 Paper 1 Q4
2017 Paper 1 Q14(b)

Other great resources

Detailed notes - HSN
Notes 1, Notes 2 - Rothesay Academy
Revision notes - BBC Bitesize
1. Trigonometric expressions
2. Solving trig equations
Notes - Airdrie Academy
1. Addition formulae and equations
2. The wave function
Notes and examples - Maths Mutt
Notes - Maths4Scotland
Key points - Perth Academy
1. Trig graphs and equations
2. Addition formulae
3. Wave functions
Notes and videos - Mistercorzi
1. Using radians
2. Related trig graphs
3. Problem solving using trig
4. Trig formulae
5. The wave function
6. Solving trig equations
7. Equations with wave functions
Lesson notes - Maths 777
1. Degrees, radians, exact values
2. Addition formulae
3. Double angle formulae
4. Trigonometric identities
5. Wave functions
6. Linear trigonometric equations
7. Trig equations with wave function
8. Quadratic trig equations 1
9. Quadratic trig equations 2
10. Quadratic trig equations 3
11. Other trigonometric equations
Videos - Larbert High School
1. Radian measure
2. Exact values
3. Trig equations 1
4. Addition formulae
5. Double angle formulae
6. Trig equations 2
7. Trigonometric identities
8. Wave function: introduction
9. Wave function: all forms
10. Wave function: multiple angles
11. Wave function: max/min values
12. Wave function: graphs
13. Wave function: equations
Videos - Maths180.com
1. Trigonometric graphs
2. Solving trig equations
Videos - Mr Thomas Maths
1. Trig graphs & equations
2. Double angles etc
3. The wave function
Videos - Siōbhán McKenna
1. Playlist A
2. Playlist B
3. Playlist C
Resources - MathsRevision.com
Mindmap 1 - Mindmap 2
Practice 1 - Practice 2
Worksheets - Brannock High School
1. Trig formulae (Answers)
2. Related angles (Answers)
3. Trig equations (Answers)
4. The wave function (Answers)
5. Trig identities (Answers)

⇦ Higher topic list  ⇧ Top of this page