Higher Maths
Integration

 Our generous sponsors 

Course content

  • Integrating an algebraic function which is, or can be simplified to, an expression of powers of \(x\)
  • Integration using the chain rule:
    • \(f(x)=(px+q)^n,\ n\neq -1\)
    • \(f(x)=p\tiny\ \normalsize cos(qx+r)\)
    • \(f(x)=p\tiny\ \normalsize sin(qx+r)\)
  • Solving differential equations:
    • of the form \(\frac{dy}{dx}=f(x)\)
    • from a given rate of change and initial conditions
  • Calculating definite integrals of functions with limits which are integers, radians, surds or fractions
  • Finding the area:
    • between a curve and the \(x\)-axis
    • between a straight line and a curve
    • between two curves.

Textbook page references

  • Zeta Higher Mathematics pp.174-191 and 199-204
  • Heinemann Higher Maths pp.164-185, 274-275 and 281-285
  • TeeJay Higher Maths pp.96-106 and 152-154

Find a Higher Maths tutor

Do you need a tutor for Higher Maths?
Click here to find a tutor in your area. 

×

Standard integrals

\(f(x)\) \(\Large\int\normalsize f(x)\,dx\)
\( sin\,ax\)
\( cos\,ax\)
\( -\large\frac{1}{a}\normalsize\,cos\,ax+C \)
\( \large\frac{1}{a}\normalsize\,sin\,ax+C \)

Example 1 (non-calculator)

Find \(\Large\int\normalsize \left(4\sqrt{x}-\large\frac{3}{x^2}\normalsize+1\right)\,dx \)

Example 2 (non-calculator)

Find \(\Large\int\normalsize \large\frac{2x^4\,-\,5}{x^3}\normalsize\,dx\small,\normalsize \ x\neq 0 \)

Example 3 (non-calculator)

Evaluate \(\Large\int^{\small 4\normalsize}_{\small 1\normalsize} \normalsize \large\frac{1}{3x^2}\normalsize\,dx\)

Recommended textbook

Zeta Maths: Higher Mathematics 
 Best price, direct from the publisher

Example 4 (non-calculator)

Evaluate \(\Large\int^{\small\sqrt{3}\normalsize}_{\small\sqrt{2}\normalsize} \normalsize (4x^3-2x)\,dx\)

Example 5 (non-calculator)

Find \(\Large\int\normalsize (2x+3)^5 \,dx \)

Example 6 (non-calculator)

Find \(\Large\int\normalsize \large\frac{4}{(9\,-\,x)^6}\normalsize \,dx\small,\normalsize \ x\neq 9\small. \)

Revision guides

How to Pass Higher Maths 
BrightRED Higher Maths Study Guide 

Example 7 (non-calculator)

Find \(\Large\int\normalsize 3\,sin(2x-\large\frac{\pi}{6}\normalsize) \,dx \)

Example 8 (non-calculator)

Evaluate \(\Large\int^{\frac{\pi}{6}}_{\small 0}\normalsize\,5\,cos(3x+\large\frac{\pi}{4}\normalsize) \,dx \)

Example 9 (non-calculator)

For a function \(f\), defined on a suitable domain, it is known that:

  • \(f'(x)=\large\frac{3x\,-\,2}{\sqrt{x}}\normalsize\)
  • \(f(9)=45\)

Express \(f(x)\) in terms of \(x\).

Practice papers

Essential Higher Maths Exam Practice 
Higher Practice Papers: Non-Calculator 
Higher Practice Papers: Calculator 

Example 10 (non-calculator)

A curve is such that \(\large\frac{dy}{dx}\normalsize =6x^2+\large\frac{1}{x^2}\normalsize .\) The curve passes through the point \((-1,3).\) Express \(y\) in terms of \(x.\)

Example 11 (non-calculator)

Given that \(f(x)=3x^2-12,\) find the area enclosed by the graph of \(y=f(x)\) and the \(x\)-axis.

Example 12 (non-calculator)

Find the area enclosed by the parabola \(y=-x^2+2x\) and the straight line \(y=3x-12.\)

Stationery supplies

Pukka Pad: A4 squared notepads 
Uni-ball Eye: fine-tip rollerball pens 

Example 13 (non-calculator)

SQA Higher Maths 2017 Paper 1 Q13

Find \(\Large\int\normalsize \large\frac{1}{(5\,-\,4x)^{\frac12}}\normalsize \,dx\small,\normalsize \ x\lt \frac{5}{4}\small. \)

Example 14 (non-calculator)

SQA Higher Maths 2018 Paper 1 Q10

Given that

  • \(\large\frac{dy}{dx}\normalsize =6x^2-3x+4\small,\) and
  • \(y=14\) when \(x=2\small,\)

express \(y\) in terms of \(x\small.\)

Example 15 (non-calculator)

SQA Higher Maths 2019 Paper 1 Q11

Evaluate \(\Large\int^{\frac{\pi}{9}}_{\small 0}\normalsize\,cos(3x-\large\frac{\pi}{6}\normalsize) \,dx\small.\)

Scientific calculators

Casio FX-85GTCW scientific calculator 
Casio FX-991CW advanced calculator 

Example 16 (calculator)

SQA Higher Maths 2019 Paper 2 Q2

Find \(\Large\int\normalsize \left(6\sqrt{x}-4x^{-3}+5\right)\,dx\small.\)

Example 17 (non-calculator)

SQA Higher Maths 2022 Paper 1 Q6

Evaluate \(\Large\int^{\small 2}_{\small -5} \normalsize (10-3x)^{-\large\frac{1}{2}\normalsize}\,dx\small.\)

Example 18 (non-calculator)

SQA Higher Maths 2023 Paper 1 Q6

Find \(\Large\int\normalsize \left(2x^5-6\sqrt{x}\right)\,dx\small,\normalsize\ x\geq 0\small.\)

Need a Higher Maths tutor?

Just use this handy little widget and our partner Bark.com will help you find one.

Past paper questions

Simple integration:
Specimen Paper 1 Q4
Specimen Paper 2 Q2
2019 Paper 2 Q2
2023 Paper 1 Q6
Integrating a trigonometric function:
Specimen Paper 2 Q10
2015 Paper 2 Q7
2016 Paper 1 Q5
2019 Paper 1 Q11
2021 Paper 2 Q10(b)
Integration using the chain rule:
2015 Paper 2 Q7
2016 Paper 1 Q5
2017 Paper 1 Q13
2018 Paper 1 Q14
2019 Paper 1 Q11
2021 Paper 1 Q7
2021 Paper 2 Q2
2022 Paper 1 Q6
2023 Paper 2 Q3
Differential equations:
Specimen Paper 1 Q13
2015 Paper 1 Q15
2016 Paper 2 Q9
2018 Paper 1 Q10
2019 Paper 2 Q13
2021 Paper 2 Q10(b)
2022 Paper 2 Q6
2023 Paper 2 Q12
Integrating to find areas:
Specimen Paper 2 Q5
2015 Paper 2 Q4
2016 P2 Q3 (with polynomials)
2017 Paper 1 Q10
2018 Paper 2 Q1
2019 Paper 1 Q8
2021 Paper 1 Q9
2021 Paper 2 Q6(b)
2022 Paper 2 Q4
2023 Paper 1 Q11
2023 Paper 2 Q8
Other question types:
2015 Paper 1 Q12
2016 Paper 2 Q10
2017 Paper 1 Q15
2019 P1 Q15 (with trigonometry)

Other great resources

Detailed notes - HSN
Notes 1, Notes 2 - Rothesay Academy
Revision notes - BBC Bitesize
1. Integration
2. Areas bounded by graphs
Notes - Airdrie Academy
1. Integration
2. Further calculus
Notes and examples - Maths Mutt
Key points - Perth Academy
1. Integration
2. Further calculus
Notes and videos - Mistercorzi
1. Basic rules and techniques
2. Definite and special integrals
3. Applications of integration
Lesson notes - Maths 777
1. Integrating polynomials
2. More complicated expressions
3. Powers of linear expressions
4. Integrating sine and cosine
5. Solving differential equations
6. Definite integrals
7. Area under a curve
8. Area between curves
Videos - Larbert High School
1. Introduction
2. Further examples
3. Differential equations
4. Definite integrals
5. Area under a curve
6. Area between curves
7. Integrating sin and cos
8. Integrating with the chain rule
Videos - Maths180.com
1. Indefinite and definite integrals
2. Area under and between curves
Videos - Mr Thomas Maths
Videos - Siōbhán McKenna
1. Integration
2. Further integration
Resources - MathsRevision.com
Mindmap 1 - Mindmap 2
Practice questions
Worksheets - Brannock High School
1. Differential equations (Answers)
2. Definite integrals (Answers)
3. Further integration (Answers)

⇦ Higher topic list  ⇧ Top of this page