Higher Maths Integration
Course content
Integrating an algebraic function which is, or can be simplified to, an expression of powers of \(x\)
Integration using the chain rule:
\(f(x)=(px+q)^n,\ n\neq -1\)
\(f(x)=p\tiny\ \normalsize cos(qx+r)\)
\(f(x)=p\tiny\ \normalsize sin(qx+r)\)
Solving differential equations:
of the form \(\frac{dy}{dx}=f(x)\)
from a given rate of change and initial conditions
Calculating definite integrals of functions with limits which are integers, radians, surds or fractions
Finding the area:
between a curve and the \(x\)-axis
between a straight line and a curve
between two curves.
Textbook page references
Zeta Higher Mathematics pp.174-191 and 199-204
Heinemann Higher Maths pp.164-185, 274-275 and 281-285
TeeJay Higher Maths pp.96-106 and 152-154
Find a Higher Maths tutor
Do you need a tutor for Higher Maths?Click here to find a tutor in your area.
Standard integrals
\(f(x)\)
\(\Large\int\normalsize f(x)\,dx\)
\( sin\,ax\) \( cos\,ax\)
\( -\large\frac{1}{a}\normalsize\,cos\,ax+C \) \( \large\frac{1}{a}\normalsize\,sin\,ax+C \)
Example 1 (non-calculator)
Find \(\Large\int\normalsize \left(4\sqrt{x}-\large\frac{3}{x^2}\normalsize+1\right)\,dx \)
Show answer
First we prepare for integration by writing each term in the form \(ax^n.\)
$$
\begin{eqnarray}
I &=& \large\int\normalsize \left(4\sqrt{x}-\small\frac{3}{x^2}\normalsize+1\right)\,dx \\[6pt]
&=& \large\int\normalsize \left(4x^{\large1\over 2\normalsize}-3x^{-2}+1\right)\,dx
\end{eqnarray}
$$
Then we integrate term-by-term, raising each power by \(1\) and dividing by the new power:
$$
\begin{eqnarray}
I &=& \frac{4x^{\large\frac{3}{2}\normalsize}}{\frac{3}{2}}- \frac{3x^{-1}}{-1} +x +c \\[6pt]
&=& \small\frac{2}{3}\normalsize\left( 4x^{\large\frac{3}{2}\normalsize} \right) +3x^{-1} +x +c \\[6pt]
&=& \small\frac{8}{3}\normalsize x^{\large\frac{3}{2}\normalsize} + \small\frac{3}{x}\normalsize +x +c \\[6pt]
&=& \small\frac{8}{3}\normalsize\sqrt{x^3} + \small\frac{3}{x}\normalsize +x +c
\end{eqnarray}
$$
Note that turning this answer into the same style as the question is not actually necessary. It has been shown here to encourage fuller understanding. However, a perfectly acceptable final answer would have been \(\frac{8}{3} x^{\large\frac{3}{2}\normalsize} +3x^{-1} +x +c.\)
Example 2 (non-calculator)
Find \(\Large\int\normalsize \large\frac{2x^4\,-\,5}{x^3}\normalsize\,dx\small,\normalsize \ x\neq 0 \)
Show answer
The denominator consists of only one term, so we can prepare for differentiation by dividing each term in the numerator by the denominator:
$$
\begin{eqnarray}
I &=& \int\small\frac{2x^4-5}{x^3}\normalsize\,dx \\[6pt]
&=& \int\small\left(\frac{2x^4}{x^3}\normalsize-\small\frac{5}{x^3}\right)\normalsize\,dx \\[6pt]
&=& \int\left(2x-5x^{-3}\right)\,dx
\end{eqnarray}
$$
Then we integrate term-by-term, raising each power by \(1\) and dividing by the new power:
$$
\begin{eqnarray}
I &=& \small\frac{2x^2}{2}\normalsize-\small\frac{5x^{-2}}{-2}\normalsize+c \\[6pt]
&=& x^2 + \small\frac{5}{2x^2}\normalsize +c \\
\end{eqnarray}
$$
Example 3 (non-calculator)
Evaluate \(\Large\int^{\small 4\normalsize}_{\small 1\normalsize} \normalsize \large\frac{1}{3x^2}\normalsize\,dx\)
Show answer
First we prepare this for integration in the usual way:
$$
\begin{eqnarray}
I &=& \large\int^{\small 4\normalsize}_{\small 1\normalsize} \normalsize \small\frac{1}{3x^2}\normalsize\,dx \\[6pt]
&=& \large\int^{\small 4\normalsize}_{\small 1\normalsize} \normalsize \small\frac{1}{3}\normalsize x^{-2}\,dx
\end{eqnarray}
$$
Then we integrate, substitute the upper and lower limits, and finally simplify:
$$
\begin{eqnarray}
I &=& \left[-\small\frac{1}{3}\normalsize x^{-1} \right]^4_1 \\[6pt]
&=& -\small\frac{1}{3}\normalsize(4^{-1}) - \left(-\small\frac{1}{3}\normalsize (1^{-1})\right) \\[6pt]
&=& -\small\frac{1}{3}\left(\small\frac{1}{4}\right) + \small\frac{1}{3}\normalsize \\[6pt]
&=& -\small\frac{1}{12}\normalsize + \small\frac{1}{3}\normalsize \\[6pt]
&=& -\small\frac{1}{12}\normalsize + \small\frac{4}{12}\normalsize \\[6pt]
&=& \small\frac{3}{12}\normalsize \\[6pt]
&=& \small\frac{1}{4}\normalsize
\end{eqnarray}
$$
Alternatively, we could have factorised the \(-\frac{1}{3}\) out of the square brackets, which would have simplified the fraction arithmetic:
$$
\begin{eqnarray}
I &=& \left[-\small\frac{1}{3}\normalsize x^{-1} \right]^4_1 \\[6pt]
&=& -\small\frac{1}{3}\normalsize \left[\small\frac{1}{x}\normalsize\right]^4_1 \\[6pt]
&=& -\small\frac{1}{3}\normalsize\left(\small\frac{1}{4}\normalsize-1\right) \\[6pt]
&=& -\small\frac{1}{3}\normalsize\left(-\small\frac{3}{4}\normalsize\right) \\[6pt]
&=& \small\frac{1}{4}\normalsize
\end{eqnarray}
$$
Recommended textbook
Zeta Maths: Higher Mathematics
Best price, direct from the publisher
Example 4 (non-calculator)
Evaluate \(\Large\int^{\small\sqrt{3}\normalsize}_{\small\sqrt{2}\normalsize} \normalsize (4x^3-2x)\,dx\)
Show answer
This example is ready to integrate without any initial preparation.
$$
\begin{eqnarray}
&\,& \large\int^{\small\sqrt{3}\normalsize}_{\small\sqrt{2}\normalsize} \normalsize (4x^3-2x)\,dx \\[6pt]
&=& \Large\left[\normalsize x^4-x^2\Large\right]^{\small\sqrt{3}\normalsize}_{\small\sqrt{2}\normalsize} \\[7pt]
&=& \left((\sqrt{3})^4-(\sqrt{3})^2\right)-\left((\sqrt{2})^4-(\sqrt{2})^2\right) \\[7pt]
&=& \left(9-3\right)-\left(4-2\right) \\[7pt]
&=& 6-2 \\[7pt]
&=& 4
\end{eqnarray}
$$
Example 5 (non-calculator)
Find \(\Large\int\normalsize (2x+3)^5 \,dx \)
Show answer
Here we use the chain rule for integration. This involves raising the power by \(1\) and dividing by the new power but also dividing by the derivative of the function in the brackets: in this case the derivative of \(2x+3,\) which is \(2.\)
$$
\begin{eqnarray}
&\,& \large\int\normalsize (2x+3)^5 \,dx \\[6pt]
&=& \frac{(2x+3)^6}{(6)(2)}+c \\[8pt]
&=& \small\frac{1}{12}\normalsize (2x+3)^6 + c
\end{eqnarray}
$$
Example 6 (non-calculator)
Find \(\Large\int\normalsize \large\frac{4}{(9\,-\,x)^6}\normalsize \,dx\small,\normalsize \ x\neq 9\small. \)
Show answer
This is very similar to the previous example, except that we must first rearrange it slightly.
$$
\begin{eqnarray}
&\,& \large\int\normalsize \small\frac{4}{(9-x)^6}\normalsize \,dx \\[6pt]
&=& 4 \large\int\normalsize (9-x)^{-6} \,dx \\[8pt]
&=& \small\frac{4(9-x)^{-5}}{(-5)(-1)}\normalsize+c \\[8pt]
&=& \small\frac{4}{5}\normalsize (9-x)^{-5} +c \\[8pt]
&=& \small\frac{4}{5(9-x)^5}\normalsize +c
\end{eqnarray}
$$
Revision guides
How to Pass Higher Maths
BrightRED Higher Maths Study Guide
Example 7 (non-calculator)
Find \(\Large\int\normalsize 3\,sin(2x-\large\frac{\pi}{6}\normalsize) \,dx \)
Show answer
This example uses the chain rule for integration with the first of the given standard integrals, above. We need to divide by the derivative of the contents of the bracket, which is just the coefficient of \(x.\)
$$
\begin{eqnarray}
&\,& \large\int\normalsize 3\,sin(2x-\small\frac{\pi}{6}\normalsize) \,dx \\[6pt]
&=& -\small\frac{3}{2}\normalsize cos(2x-\small\frac{\pi}{6}\normalsize)+c
\end{eqnarray}
$$
Example 8 (non-calculator)
Evaluate \(\Large\int^{\frac{\pi}{6}}_{\small 0}\normalsize\,5\,cos(3x+\large\frac{\pi}{4}\normalsize) \,dx \)
Show answer
This tricky example of definite integration requires the chain rule for integration and a clear understanding of the exact values of trigonometric functions in the four quadrants.
$$
\begin{eqnarray}
&\,& \large\int^{\frac{\pi}{6}}_{\small 0\normalsize}\normalsize\,5\,cos(3x+\small\frac{\pi}{4}\normalsize) \,dx \\[8pt]
&=& \left[\small\frac{5}{3}\normalsize\,sin(3x+\small\frac{\pi}{4}\normalsize)\right]^{\large\frac{\pi}{6}\normalsize}_{\large 0\normalsize} \\[8pt]
&=& \small\frac{5}{3}\large\left[\normalsize\,sin(3x+\small\frac{\pi}{4}\normalsize)\large\right]^{\frac{\pi}{6}}_{0} \\[8pt]
&=& \small\frac{5}{3}\large\left(\normalsize sin\large\left(\normalsize \small\frac{\pi}{2}\normalsize+\small\frac{\pi}{4}\normalsize \large\right)\normalsize - sin\large\left(\normalsize 0+\small\frac{\pi}{4}\normalsize \large\right)\normalsize \large\right)\normalsize \\[8pt]
&=& \small\frac{5}{3}\large\left(\normalsize sin\,\small\frac{3\pi}{4}\normalsize - sin\,\small\frac{\pi}{4}\normalsize\large\right)\normalsize \\[8pt]
&=& \small\frac{5}{3}\left(\small\frac{1}{\sqrt{2}}\normalsize-\small\frac{1}{\sqrt{2}}\normalsize\right) \\[8pt]
&=& \small\frac{5}{3}\normalsize\left( 0\right) \\[7pt]
&=& 0
\end{eqnarray}
$$
Example 9 (non-calculator)
For a function \(f\), defined on a suitable domain, it is known that:
\(f'(x)=\large\frac{3x\,-\,2}{\sqrt{x}}\normalsize\)
\(f(9)=45\)
Express \(f(x)\) in terms of \(x\).
Show answer
This is an example of a differential equation.
We are given the derivative \(f'(x)\) and have to integrate to find the general solution .
We then use the additional condition to find the constant of integration \(c,\) which gives us the particular solution .
$$
\begin{eqnarray}
f(x) &=& \int\small \frac{3x-2}{\sqrt{x}}\normalsize\,dx \\[8pt]
&=& \int\small\frac{3x-2}{x^{\frac{1}{2}}} \normalsize\,dx \\[8pt]
&=& \int\left(\small\frac{3x}{x^{\frac{1}{2}}}\normalsize-\small\frac{2}{x^{\frac{1}{2}}}\normalsize\right)\,dx \\[8pt]
&=& \int\left(3x^{\frac{1}{2}}-2x^{-\frac{1}{2}}\right)\,dx \\[8pt]
&=& \small\frac{2}{3}\normalsize(3x^{\frac{3}{2}})-2(2x^{\frac{1}{2}})+c \\[8pt]
&=& 2x^{\frac{3}{2}}-4x^{\frac{1}{2}}+c
\end{eqnarray}
$$
This is the general solution as it still involves the arbitrary constant of integration.
However, we also know that \(f(9)=45\) so we can substitute this to find the particular solution.
$$
\begin{eqnarray}
f(x) &=& 2x^{\frac{3}{2}}-4x^{\frac{1}{2}}+c \\[6pt]
f(9) &=& 2(9^{\frac{3}{2}})-4(9^{\frac{1}{2}})+c \\[6pt]
45 &=& 2(\sqrt{9})^3-4(\sqrt{9})+c \\[6pt]
45 &=& 2(27)-4(3)+c \\[6pt]
45 &=& 54-12+c \\[6pt]
45 &=& 42+c \\[6pt]
c &=& 3
\end{eqnarray}
$$
So the particular solution is \(f(x) = 2x^{\frac{3}{2}}-4x^{\frac{1}{2}}+3\small.\)
Practice papers
Essential Higher Maths Exam Practice
Higher Practice Papers: Non-Calculator
Higher Practice Papers: Calculator
Example 10 (non-calculator)
A curve is such that \(\large\frac{dy}{dx}\normalsize =6x^2+\large\frac{1}{x^2}\normalsize .\) The curve passes through the point \((-1,3).\) Express \(y\) in terms of \(x.\)
Show answer
This is another way of presenting a differential equation.
We integrate and then substitute the \(x\) and \(y\) values of the given point to find the particular solution.
$$
\begin{eqnarray}
y &=& \int \left(6x^2+\small\frac{1}{x^2}\normalsize\right)\,dx \\[8pt]
&=& \int \left(6x^2+x^{-2}\right)\,dx \\[8pt]
&=& 2x^3-x^{-1}+c \\[8pt]
&=& 2x^3-\small\frac{1}{x}\normalsize+c
\end{eqnarray}
$$
Now we substitute \(x=-1\) and \(y=3.\)
$$
\begin{eqnarray}
y &=& 2x^3-\small\frac{1}{x}\normalsize +c \\[6pt]
3 &=& 2(-1)^3-\small\frac{1}{-1}\normalsize +c \\[6pt]
3 &=& -2+1+c \\[6pt]
3 &=& -1+c \\[6pt]
c &=& 4
\end{eqnarray}
$$
So the particular solution is \(y = 2x^3-\large\frac{1}{x}\normalsize+4\)
Example 11 (non-calculator)
Given that \(f(x)=3x^2-12,\) find the area enclosed by the graph of \(y=f(x)\) and the \(x\)-axis.
Show answer
Note that the graph of \(y=3x^2-12\) is a parabola with a minimum turning point – a "happy" parabola, in non-mathematical language! So the area that we have to find is below the \(x\)-axis.
We first need to find where the curve intersects the \(x\)-axis so that we know the limits of our definite integration. The equation of the \(x\)-axis is \(y=0\) so we substitute \(y=0\):
$$
\begin{eqnarray}
0 &=& 3x^2-12 \\[6pt]
0 &=& 3(x^2-4) \\[6pt]
0 &=& 3(x+2)(x-2) \\[6pt]
\end{eqnarray}
$$
$$ x=-2\:\:\small\textsf{or}\normalsize\:\:x=2 $$
Then we integrate between these limits:
$$
\begin{eqnarray}
\small\textsf{Area}\normalsize &=& \large\int^{\small 2\normalsize}_{\small -2\normalsize}\normalsize(3x^2-12)\,dx \\[7pt]
&=& \Large\left[\normalsize x^3-12x\Large\right]^{\small 2\normalsize}_{\small -2\normalsize} \\[7pt]
&=& \left(2^3-12(2)\right)-\left((-2)^3-12(-2)\right) \\[7pt]
&=& \left(8-24\right)-\left(-8+24\right) \\[7pt]
&=& -16-16 \\[7pt]
&=& -32
\end{eqnarray}
$$
The negative sign is because, as previously noted, this area is below the \(x\)-axis. However, there is clearly no such thing as a negative area, so the actual area is \(32\) units2 .
Example 12 (non-calculator)
Find the area enclosed by the parabola \(y=-x^2+2x\) and the straight line \(y=3x-12.\)
Show answer
First we need to equate the functions to find the \(x\)-coordinates of the points of intersection:
$$
\begin{eqnarray}
-x^2+2x &=& 3x-12 \\[6pt]
-x^2-x+12 &=& 0 \\[6pt]
(x+4)(-x+3) &=& 0 \\[6pt]
\end{eqnarray}
$$
$$ x=-4\:\:\small\textsf{or}\normalsize\:\:x=3 $$
Because the coefficient of \(x^2\) is negative, this is a "sad" parabola, so the straight line is below the required area and the parabola is above.
So now we integrate "Upper – Lower" between \(-4\) and \(3\).
$$
\begin{eqnarray}
\small\textsf{Area}\normalsize &=& \large\int^{\small 3\normalsize}_{\small -4\normalsize}\normalsize\left((-x^2+2x)-(3x-12)\right)\,dx \\[7pt]
&=& \large\int^{\small 3\normalsize}_{\small -4\normalsize}\normalsize\left(-x^2-x+12\right)\,dx \\[7pt]
&=& \Large\left[\normalsize -\small\frac{1}{3}\normalsize x^3-\small\frac{1}{2}\normalsize x^2+12x\Large\right]^{\small 3\normalsize}_{\small -4\normalsize} \\[7pt]
&=& \left(-9-\small\frac{9}{2}\normalsize+36\right)-\left(\small\frac{64}{3}\normalsize-8-48\right) \\[7pt]
&=& \left(27-\small\frac{9}{2}\normalsize\right)-\left(\small\frac{64}{3}\normalsize-56\right) \\[7pt]
&=& \left(\small\frac{54}{2}\normalsize-\small\frac{9}{2}\normalsize\right)-\left(\small\frac{64}{3}\normalsize-\small\frac{168}{3}\normalsize\right) \\[7pt]
&=& \left(\small\frac{45}{2}\normalsize\right)-\left(-\small\frac{104}{3}\normalsize\right) \\[7pt]
&=& \small\frac{45}{2}\normalsize+\small\frac{104}{3}\normalsize \\[7pt]
&=& \small\frac{135}{6}\normalsize+\small\frac{208}{6}\normalsize \\[7pt]
&=& \small\frac{343}{6}\normalsize \\[4pt]
\end{eqnarray}
$$
So the area enclosed by the two graphs is \(\large\frac{343}{6}\normalsize\) units2 , or \(57\large\frac{1}{6}\normalsize\) units2 .
Note that the fraction work in this example is harder than anything that has ever appeared on the non-calculator paper, but although you are unlikely to face such awkward numbers, you do need to be ready to manipulate fractions in exactly this way. It takes quite a lot of practice – sorry!
Stationery supplies
Pukka Pad: A4 squared notepads
Uni-ball Eye: fine-tip rollerball pens
Example 13 (non-calculator)
SQA Higher Maths 2017 Paper 1 Q13
Find \(\Large\int\normalsize \large\frac{1}{(5\,-\,4x)^{\frac12}}\normalsize \,dx\small,\normalsize \ x\lt \frac{5}{4}\small. \)
Show answer
This 4-mark question requires some rearrangement before using the chain rule to integrate.
$$
\begin{eqnarray}
&\,& \large\int\normalsize \small\frac{1}{(5-4x)^{\frac12}}\normalsize \,dx \\[6pt]
&=& \large\int\normalsize (5-4x)^{-\frac12} \,dx \\[8pt]
&=& \frac{(5-4x)^{\frac12}}{(\frac{1}{2})(-4)}+c \\[8pt]
&=& -\small\frac{1}{2}\normalsize (5-4x)^{\frac12}+c
\end{eqnarray}
$$
Example 14 (non-calculator)
SQA Higher Maths 2018 Paper 1 Q10
Given that
\(\large\frac{dy}{dx}\normalsize =6x^2-3x+4\small,\) and
\(y=14\) when \(x=2\small,\)
express \(y\) in terms of \(x\small.\)
Show answer
This is a differential equation. We are given the derivative and have to integrate to find the general solution .
We then use the additional condition to find the constant of integration \(c,\) which gives us the particular solution .
$$
\begin{eqnarray}
y &=& \int (6x^2-3x+4)\,dx \\[8pt]
&=& 2x^3-\small\frac{3}{2}\normalsize x^2+4x+c
\end{eqnarray}
$$
This is the general solution as it still involves the arbitrary constant of integration.
However, we are also told that \(y=14\) when \(x=2\small,\) so we can substitute this to find the particular solution.
$$
\begin{eqnarray}
y &=& 2x^3-\small\frac{3}{2}\normalsize x^2+4x+c \\[6pt]
14 &=& 2(2^3)-\small\frac{3}{2}\normalsize(2^2)+4(2)+c \\[6pt]
14 &=& 16-\small\frac{3}{2}\normalsize (4)+8+c \\[6pt]
14 &=& 16-6+8+c \\[6pt]
14 &=& 18+c \\[6pt]
c &=& 14-18 \\[6pt]
c &=& -\!4
\end{eqnarray}
$$
So the particular solution is \(y=2x^3-\large\frac{3}{2}\normalsize x^2+4x-4\small.\)
Example 15 (non-calculator)
SQA Higher Maths 2019 Paper 1 Q11
Evaluate \(\Large\int^{\frac{\pi}{9}}_{\small 0}\normalsize\,cos(3x-\large\frac{\pi}{6}\normalsize) \,dx\small.\)
Show answer
This question requires the chain rule for integration and a clear understanding of the exact values of trig functions in the four quadrants. At one point in the working we need to evaluate \(sin\,(-\large\frac{\pi}{6})\small,\) so we need to understand that this is a quadrant 4 angle and that its sine is negative.
$$
\begin{eqnarray}
&\,& \large\int^{\frac{\pi}{9}}_{\small 0\normalsize}\normalsize\,cos(3x-\small\frac{\pi}{6}\normalsize) \,dx \\[8pt]
&=& \left[\small\frac{1}{3}\normalsize\,sin(3x-\small\frac{\pi}{6}\normalsize)\right]^{\large\frac{\pi}{9}\normalsize}_{\large 0\normalsize} \\[8pt]
&=& \small\frac{1}{3}\normalsize\,sin\large\left(\normalsize \small\frac{3\pi}{9}\normalsize-\small\frac{\pi}{6}\normalsize \large\right)\normalsize\,-\,\small\frac{1}{3}\normalsize\,sin\large\left(\normalsize 3(0)-\small\frac{\pi}{6}\normalsize \large\right)\normalsize \\[8pt]
&=& \small\frac{1}{3}\normalsize\,sin\large\left(\normalsize \small\frac{\pi}{3}\normalsize-\small\frac{\pi}{6}\normalsize \large\right)\normalsize\,-\,\small\frac{1}{3}\normalsize\,sin\large\left(-\small\frac{\pi}{6}\normalsize \large\right)\normalsize \\[8pt]
&=& \small\frac{1}{3}\normalsize\,sin\,\small\frac{\pi}{6}\normalsize\,-\,\small\frac{1}{3}\normalsize\,sin\,\large\left(-\small\frac{\pi}{6}\normalsize \large\right)\normalsize \\[8pt]
&=& \small\frac{1}{3}\normalsize\times\small\frac{1}{2}\normalsize\,-\,\small\frac{1}{3}\normalsize\times\left(-\small\frac{1}{2}\normalsize\right) \\[8pt]
&=& \small\frac{1}{6}\normalsize + \small\frac{1}{6}\normalsize \\[8pt]
&=& \small\frac{1}{3}\normalsize \\[8pt]
\end{eqnarray}
$$
Scientific calculators
Casio FX-85GTCW scientific calculator
Casio FX-991CW advanced calculator
Example 16 (calculator)
SQA Higher Maths 2019 Paper 2 Q2
Find \(\Large\int\normalsize \left(6\sqrt{x}-4x^{-3}+5\right)\,dx\small.\)
Show answer
First we prepare for integration by writing the first term in the form \(ax^n.\)
$$
\begin{eqnarray}
I &=& \large\int\normalsize \left(6\sqrt{x}-4x^{-3}+5\right)\,dx \\[6pt]
&=& \large\int\normalsize \left(6x^{\large1\over 2\normalsize}-4x^{-3}+5\right)\,dx
\end{eqnarray}
$$
Then we integrate term-by-term, raising each power by \(1\) and dividing by the new power:
$$
\begin{eqnarray}
I &=& \frac{6x^{\large\frac{3}{2}\normalsize}}{\frac{3}{2}}- \frac{4x^{-2}}{-2} +5x +c \\[6pt]
&=& \small\frac{2}{3}\normalsize\left( 6x^{\large\frac{3}{2}\normalsize} \right) +2x^{-2} +5x +c \\[6pt]
&=& 4x^{\large\frac{3}{2}\normalsize} + 2x^{-2} +5x +c
\end{eqnarray}
$$
Example 17 (non-calculator)
SQA Higher Maths 2022 Paper 1 Q6
Evaluate \(\Large\int^{\small 2}_{\small -5} \normalsize (10-3x)^{-\large\frac{1}{2}\normalsize}\,dx\small.\)
Show answer
This definite integration requires the chain rule.
$$
\begin{eqnarray}
&\,& \large\int^{\small 2}_{\small -5} \normalsize (10-3x)^{-\large\frac{1}{2}\normalsize}\,dx \\[8pt]
&=& \large\left[\normalsize \frac{(10-3x)^{\large\frac{1}{2}\normalsize}}{(\frac12)(-3)} \large\right]^{\small 2}_{\small -5} \\[8pt]
&=& \large\left[\normalsize \frac{(10-3x)^{\large\frac{1}{2}\normalsize}}{-\frac{3}{2}} \large\right]^{\small 2}_{\small -5} \\[8pt]
&=& -\small\frac{2}{3}\large\left[\normalsize (10-3x)^{\large\frac{1}{2}\normalsize} \large\right]^{\small 2}_{\small -5} \\[8pt]
&=& -\small\frac{2}{3}\large\left(\normalsize (10-3\!\times\!2)^{\large\frac{1}{2}\normalsize} - (10-3\!\times\!\!\!-5)^{\large\frac{1}{2}\normalsize} \large\right)\normalsize \\[8pt]
&=& -\small\frac{2}{3}\large\left(\normalsize (10-6)^{\large\frac{1}{2}\normalsize} - (10+15)^{\large\frac{1}{2}\normalsize} \large\right)\normalsize \\[8pt]
&=& -\small\frac{2}{3}\large\left(\normalsize \sqrt{4} - \sqrt{25} \large\right)\normalsize \\[8pt]
&=& -\small\frac{2}{3}\large\left(\normalsize 2 - 5 \large\right)\normalsize \\[8pt]
&=& -\small\frac{2}{3}\large\left(\normalsize -3 \large\right)\normalsize \\[8pt]
&=& \ 2
\end{eqnarray}
$$
Example 18 (non-calculator)
SQA Higher Maths 2023 Paper 1 Q6
Find \(\Large\int\normalsize \left(2x^5-6\sqrt{x}\right)\,dx\small,\normalsize\ x\geq 0\small.\)
Show answer
First we prepare for integration by writing the second term in the form \(ax^n.\)
$$
\begin{eqnarray}
I &=& \large\int\normalsize \left(2x^5-6\sqrt{x}\right)\,dx \\[6pt]
&=& \large\int\normalsize \left(2x^5-6x^{\large1\over 2\normalsize}\right)\,dx
\end{eqnarray}
$$
Then we integrate each term, adding \(1\) to each power and dividing by the new power:
$$
\begin{eqnarray}
I &=& \frac{2x^{6}}{6}- \frac{6x^{\large\frac{3}{2}\normalsize}}{\frac{3}{2}} +c \\[6pt]
&=& \small\frac{1}{3}\normalsize x^6 - \small\frac{2}{3}\normalsize\left( 6x^{\large\frac{3}{2}\normalsize} \right) +c \\[6pt]
&=& \small\frac{1}{3}\normalsize x^6 - 4x^{\large\frac{3}{2}\normalsize} +c
\end{eqnarray}
$$
Note that there is no need to convert the second term back into surd form, but you may do so if you prefer.
Need a Higher Maths tutor?
Just use this handy little widget and our partner Bark.com will help you find one.
Past paper questions
Other great resources