Higher Maths Differentiation
Course content
Differentiating an algebraic function which is, or can be simplified to, an expression in powers of \(x\)
Differentiating \(k\ sin\ x\) and \(k\ cos\ x\)
Differentiating a composite function using the chain rule
Determining the equation of a tangent to a curve at a given point by differentiation
Determining where a function is strictly increasing or decreasing
Sketching the graph of an algebraic function by determining stationary points and their nature as well as intersections with the axes and behaviour
of \(f(x)\) for large positive and negative values of \(x\)
Optimisation: determining the optimal solution for a given problem
Determining the greatest and/or least values of a function on a closed interval
Solving problems using rate of change
Sketching \(y=f'(x)\) given the graph of \(y=f(x).\)
Textbook page references
Zeta Higher Mathematics pp.149-173 and 193-199
Heinemann Higher Maths pp.85-119, 272-273 and 277-281
TeeJay Higher Maths pp.28-38, 68-75 and 146-152
Find a Higher Maths tutor
Do you need a tutor for Higher Maths?Click here to find a tutor in your area.
Standard derivatives
\(f(x)\)
\(f'(x)\)
\( sin\tiny\ \normalsize ax\) \( cos\tiny\ \normalsize ax\)
\( a\tiny\ \normalsize cos\tiny\ \normalsize ax \) \( -a\tiny\ \normalsize sin\tiny\ \normalsize ax \)
Example 1 (non-calculator)
Given that \( y=5x^3-4\sqrt{x}+\large\frac{1}{3x}\normalsize,\) where \(x\gt 0\), find \( \large\frac{dy}{dx}\normalsize.\) Express your answer without any non-integer or negative powers of \(x.\)
Show answer
Before differentiating, we need to express the surd term and the reciprocal term as powers of \(x\):
$$
\begin{eqnarray}
y &=& 5x^3 - 4\sqrt{x} + \small \frac{1}{3x}\normalsize \\[6pt]
&=& 5x^3 - 4x^{\frac{1}{2}} + \small \frac{1}{3}\normalsize x^{-1}
\end{eqnarray}
$$
Now that \(y\) is in differentiable form, we are able to differentiate:
$$
\begin{eqnarray}
\small\frac{dy}{dx}\normalsize &=& 15x^2 - 2x^{-\frac{1}{2}} - \small \frac{1}{3}\normalsize x^{-2} \\[6pt]
&=& 15x^2 - \small\frac{2}{\sqrt{x}}\normalsize - \small \frac{1}{3x^2}\normalsize \\[6pt]
\end{eqnarray}
$$
Example 2 (non-calculator)
Calculate the rate of change of \(f(t)=t+\large\frac{3}{t}\normalsize, t \gt 0,\) when \(t=2.\)
Show answer
First we prepare \(f(t)\) for differentiation:
$$
\begin{eqnarray}
f(t) &=& t+\small\frac{3}{t}\normalsize \\[6pt]
&=& t+3t^{-1}
\end{eqnarray}
$$
Now we differentiate:
$$
\begin{eqnarray}
f'(t) &=& 1-3t^{-2} \\[6pt]
&=& 1-\small\frac{3}{t^2}\normalsize
\end{eqnarray}
$$
Finally, we substitute \(t=2\):
$$
\begin{eqnarray}
f'(2) &=& 1-\small\frac{3}{2^2}\normalsize \\[6pt]
&=& 1-\small\frac{3}{4}\normalsize \\[6pt]
&=& \small\frac{1}{4}\normalsize
\end{eqnarray}
$$
Example 3 (non-calculator)
Find the equation of the tangent to the curve \(y=\large\frac{1}{8}\normalsize x^4-5\) at the point where \(x=-2\).
Show answer
First we differentiate:
$$
\begin{eqnarray}
\small\frac{dy}{dx}\normalsize &=& \small\frac{4}{8}\normalsize x^3 \\[6pt]
&=& \small\frac{1}{2}\normalsize x^3
\end{eqnarray}
$$
Now we substitute \(x=-2\) to find the gradient of the tangent:
$$
\begin{eqnarray}
m_{\textsf{tan}} &=& \small\frac{1}{2}\normalsize(-2)^3 \\[6pt]
&=& \small\frac{1}{2}\normalsize(-8) \\[6pt]
&=& -4
\end{eqnarray}
$$
Before we can find the equation of the tangent, we need to know the \(y\)-coordinate of the point of contact:
$$
\begin{eqnarray}
y &=& \small\frac{1}{8}\normalsize x^4-5 \\[6pt]
&=& \small\frac{1}{8}\normalsize (-2)^4-5 \\[6pt]
&=& \small\frac{1}{8}\normalsize (16)-5 \\[6pt]
&=& 2-5 \\[6pt]
&=& -3
\end{eqnarray}
$$
Finally, we use the Nat 5 method to find the equation of the straight line through \((-2,-3)\) with gradient \(-4\):
$$
\begin{eqnarray}
y-b &=& m(x-a)\\[6pt]
y+3 &=& -4(x+2)\\[6pt]
y+3 &=& -4x-8\\[6pt]
y &=& -4x-11
\end{eqnarray}
$$
Recommended textbook
Zeta Maths: Higher Mathematics
Best price, direct from the publisher
Example 4 (non-calculator)
Find the coordinates of the points on the curve \(y=x^3-3x^2\) that have tangents with gradient \(9\).
Show answer
First we differentiate:
$$ \small\frac{dy}{dx}\normalsize = 3x^2-6x $$
Then we look for \(x\)-values where the derivative equals 9:
$$
\begin{eqnarray}
3x^2-6x &=& 9 \\[6pt]
x^2-2x &=& 3 \\[6pt]
x^2-2x-3 &=& 0 \\[6pt]
(x+1)(x-3) &=& 0 \\[6pt]
x+1=0 &\:\ \small\textsf{or}\normalsize\ & x-3=0 \\[6pt]
x=-1 &\:\ \small\textsf{or}\normalsize\ & x=3 \\[6pt]
\end{eqnarray}
$$
This tells us that there are two such points on the curve.
Finally, we find the corresponding \(y\)-values.
When \(x=-1\):
$$
\begin{eqnarray}
y &=& (-1)^3-3(-1)^2 \\[6pt]
&=& -1-3 \\[6pt]
&=& -4
\end{eqnarray}
$$
So one point is \((-1,-4)\).
When \(x=3\):
$$
\begin{eqnarray}
y &=& 3^3-3(3^2) \\[6pt]
&=& 27-27 \\[6pt]
&=& 0
\end{eqnarray}
$$
So the other point is \((3,0)\).
Example 5 (non-calculator)
Given \(f(x)=5\tiny\ \normalsize cos\tiny\ \normalsize 2x\), evaluate \(f'(\large\frac{5\pi}{6})\normalsize.\)
Show answer
This example needs a firm understanding of trig quadrants from Nat 5 and radian measure from Higher.
First we differentiate:
$$
\begin{eqnarray}
f'(x) &=& 5(-2\tiny\ \normalsize sin\tiny\ \normalsize 2x) \\[6pt]
&=& -10\tiny\ \normalsize sin\tiny\ \normalsize 2x
\end{eqnarray}
$$
Then we substitute \(x=\large\frac{5\pi}{6}\normalsize\):
$$
\begin{eqnarray}
f'\small\left(\frac{5\pi}{6}\right)\normalsize &=& -10\tiny\ \normalsize sin\tiny\ \normalsize 2\small\left(\frac{5\pi}{6}\right)\normalsize \\[6pt]
&=& -10\tiny\ \normalsize sin\tiny\ \normalsize \small\frac{5\pi}{3}\normalsize
\end{eqnarray}
$$
To complete this, note that \(\large\frac{5\pi}{3}\normalsize\) is a fourth quadrant angle. It's \(2\pi - \large\frac{\pi}{3}\normalsize\), and sine is negative in the "C" quadrant.
$$
\begin{eqnarray}
f'\small\left(\frac{5\pi}{6}\right)\normalsize &=& -10\tiny\ \normalsize sin\tiny\ \normalsize \small\frac{5\pi}{3}\normalsize \\[6pt]
&=& -10\tiny\ \small\left(\normalsize-sin\tiny\ \normalsize \small\frac{\pi}{3}\small\right)\normalsize \\[6pt]
&=& 10\tiny\ \normalsize sin\tiny\ \normalsize \small\frac{\pi}{3}\normalsize \\[6pt]
&=& 10\small\left(\small\frac{\sqrt{3}}{2}\normalsize\small\right) \\[6pt]
&=& 5\sqrt{3} \\[6pt]
\end{eqnarray}
$$
Example 6 (calculator)
Given \(h(x)=\large\frac{2}{(1-4x)^5}\normalsize\), \(x \neq \frac{1}{4}\), find \(h'(\frac{1}{8}).\)
Show answer
First we prepare \(h(x)\) for differentiation:
$$
\begin{eqnarray}
h(x) &=& \small\frac{2}{(1-4x)^5}\normalsize \\[6pt]
&=& 2(1-4x)^{-5}
\end{eqnarray}
$$
Then we differentiate using the chain rule:
$$
\begin{eqnarray}
h'(x) &=& -10{(1-4x)^{-6}}(-4) \\[6pt]
&=& 40(1-4x)^{-6}
\end{eqnarray}
$$
Finally, we substitute \(x=\large\frac{1}{8}\normalsize\):
$$
\begin{eqnarray}
h'\small\left(\frac{1}{8}\right)\normalsize &=& 40\left(1-4 \small \left( \frac{1}{8} \right) \normalsize\right)^{-6} \\[6pt]
&=& 40\left(1-\small\frac{1}{2}\normalsize\right)^{-6} \\[6pt]
&=& 40\times \left(\small\frac{1}{2}\normalsize\right)^{-6} \\[6pt]
&=& 40\times 2^6 \\[6pt]
&=& 40\times 64 \\[6pt]
&=& 2560
\end{eqnarray}
$$
Revision guides
How to Pass Higher Maths
BrightRED Higher Maths Study Guide
Example 7 (non-calculator)
(a) Find the \(x\)-coordinates of the stationary points on the graph with equation \(y=f(x),\) where \(f(x)=x^3-3x-2.\)
(b) Hence determine the range of values of \(x\) for which the function \(f\) is strictly increasing.
Show answer
(a) We differentiate and then fully factorise the derivative:
$$
\begin{eqnarray}
f'(x) &=& 3x^2-3 \\[6pt]
&=& 3(x^2-1) \\[6pt]
&=& 3(x+1)(x-1) \\[6pt]
\end{eqnarray}
$$
\(f'(x)=0\) at stationary points, so
$$
\begin{eqnarray}
x+1=0 &\ \small\textsf{or}\normalsize& x-1=0 \\[6pt]
x=-1 &\ \small\textsf{or}\normalsize& x=1
\end{eqnarray}
$$
(b) One way of doing this is with a nature table:
$$ \begin{array} {|c|c|}
\hline x & \rightarrow & -1 & \rightarrow & 1 & \rightarrow \\
\hline f'(x) & + & 0 & - & 0 & + \\
\hline \end{array} $$
So \(f\) is strictly increasing when \(x \lt -1\) or \(x \gt 1.\)
Example 8 (non-calculator)
Find the dimensions of a square-based cuboid with volume \(125\) cm3 and minimum surface area.
Show answer
This is an example of "optimisation". First we set some variables:
Let \(x\) cm be the length.
So the breadth is also \(x\) cm.
Let \(h\) cm represent the height.
Let \(A\) cm2 be the surface area.
The surface area consists of the base and top (each of area \(x^2\)) and four sides (each of area \(xh\)).
So \(A = 2x^2 + 4xh.\)
Notice that this formula for \(A\) involves two variables: \(x\) and \(h\). We need to eliminate one of them so that we can differentiate with respect to the other. In order to do this, we use the formula for the other piece of information that we are given: that the volume is \(125\) cm3 .
So \(x^2 h=125\), which we can rearrange to obtain \(h=\large\frac{125}{x^2}\normalsize.\)
Substitute this into the formula for the surface area and prepare it for differentiation:
$$
\begin{eqnarray}
A &=& 2x^2 + 4xh \\[6pt]
&=& 2x^2 + 4x\small\left(\frac{125}{x^2}\right)\normalsize \\[6pt]
&=& 2x^2 + \small\frac{500}{x}\normalsize \\[6pt]
&=& 2x^2 + 500x^{-1} \\[6pt]
\end{eqnarray}
$$
Now we differentiate with respect to \(x\):
$$ \frac{dA}{dx} = 4x-500x^{-2} $$
Stationary points occur when the derivative equals zero:
$$
\begin{eqnarray}
4x-500x^{-2} &=& 0 \\[6pt]
\end{eqnarray}
$$
Multiply through by \(x^2\) to get rid of the negative power:
$$
\begin{eqnarray}
4x^3-500 &=& 0 \\[6pt]
4x^3 &=& 500 \\[6pt]
x^3 &=& 125 \\[6pt]
x &=& \sqrt[\leftroot{-1}\uproot{2}\scriptstyle 3]{125} \\[6pt]
x &=& 5
\end{eqnarray}
$$
We have now found a "critical value" of \(x\!=\!5\). However, we need to test that \(x\!=\!5\) really does give the minimum surface area. For that, we use a nature table:
$$ \begin{array} {|c|c|}
\hline x & \rightarrow & 5 & \rightarrow \\
\hline \large\frac{dA}{dx}\normalsize & - & 0 & + \\
\hline \end{array} $$
This gives the shape of a minimum turning point, so \(x\!=\!5\) really does minimise the surface area.
All that remains is to find the height \(h,\) as the question asked for all the dimensions of the cuboid.
$$ h=\small\frac{125}{x^2}\normalsize = \small\frac{125}{5^2}\normalsize = 5 $$
So, unsurprisingly, our cuboid with minimum surface area is actually a \(5\!\times\!5\!\times\!5\) cm cube.
Example 9 (non-calculator)
Find the minimum and maximum values of \(f(x)=4x^3+9x^2-12x+1\) in the interval \(-1\leq x\leq 2\).
Show answer
It is possible that the maximum or minimum values of the function are at the start or end of the interval. So we find the value of the function at the lower bound:
$$
\begin{eqnarray}
f(-1) &=& 4(-1)^3+9(-1)^2-12(-1)+1 \\[6pt]
&=& 4(-1)+9(1)+12+1 \\[6pt]
&=& -\!4+9+12+1 \\[6pt]
&=& 18 \\[6pt]
\end{eqnarray}
$$
Then we find the value at the upper bound:
$$
\begin{eqnarray}
f(2) &=& 4(2^3)+9(2^2)-12(2)+1 \\[6pt]
&=& 4(8)+9(4)-24+1 \\[6pt]
&=& 32+36-24+1 \\[6pt]
&=& 45 \\[6pt]
\end{eqnarray}
$$
If there are any maximum or minimum turning points within the interval, these might be where the maximum or minimum values are. So we need to differentiate and find any stationary points in the interval:
$$
\begin{eqnarray}
f'(x) &=& 12x^2+18x-12 \\[6pt]
&=& 6(2x^2+3x-2) \\[6pt]
&=& 6(2x-1)(x+2) \\[6pt]
\end{eqnarray}
$$
At stationary points, \(f'(x)=0\) so we solve:
$$
\begin{gather}
6(2x-1)(x+2) = 0 \\[6pt]
(2x-1)(x+2) = 0 \\[6pt]
2x-1=0 \:\ \small\textsf{or}\normalsize\ x+2=0 \\[6pt]
x=\small\frac12\normalsize \:\ \small\textsf{or}\normalsize\ x=-\!2 \\[6pt]
\end{gather}
$$
Note that \(x=-\!2\) is outside the interval \(-1\leq x\leq 2\) so we disregard it. However, we must find the value of \(f(\small\frac12\normalsize)\) as it might be the maximum or minimum value within the interval.
$$
\begin{eqnarray}
f\left(\small\frac{1}{2}\normalsize\right) &=& 4\left(\small\frac{1}{2}\normalsize\right)^3+9\left(\small\frac{1}{2}\normalsize\right)^2\!-12\left(\small\frac{1}{2}\normalsize\right)+1 \\[6pt]
&=& \small\frac{4}{8}\normalsize+\small\frac{9}{4}\normalsize-\small\frac{12}{2}\normalsize+1 \\[6pt]
&=& \small\frac{4}{8}\normalsize+\small\frac{18}{8}\normalsize-\small\frac{48}{8}\normalsize+\small\frac{8}{8}\normalsize \\[6pt]
&=& \small\frac{-18}{8}\normalsize \\[6pt]
&=& -\!\small\frac{9}{4}\normalsize \\[6pt]
&=& -\!2\small\frac{1}{4}\normalsize \\[6pt]
\end{eqnarray}
$$
We now compare the three values to see which is the maximum and which is the minimum:
\(f(-1)=18\), \(f(2)=45\) and \(f(\small\frac{1}{2}\normalsize)=-\!2\small\frac{1}{4}\normalsize\) so the minimum value of \(f\) is \(-\!2\small\frac{1}{4}\normalsize\) and the maximum value is \(45\).
Practice papers
Essential Higher Maths Exam Practice
Higher Practice Papers: Non-Calculator
Higher Practice Papers: Calculator
Example 10 (non-calculator)
SQA Higher Maths 2017 Paper 1 Q3
Given \( y=(4x-1)^{12}\small,\) find \( \large\frac{dy}{dx}\normalsize.\)
Show answer
This 2-mark question is a simple application of the chain rule.
$$
\begin{eqnarray}
\small\frac{dy}{dx}\normalsize &=& 12(4x-1)^{11}(4) \\[6pt]
&=& 48(4x-1)^{11}
\end{eqnarray}
$$
Example 11 (non-calculator)
SQA Higher Maths 2017 Paper 1 Q8
Calculate the rate of change of \(d(t)=\large\frac{1}{2t}\normalsize, t \neq 0,\) when \(t=5.\)
Show answer
First we prepare \(d(t)\) for differentiation:
$$
\begin{eqnarray}
d(t) &=& \small\frac{1}{2t} \\[6pt]
&=& \small\frac{1}{2}\normalsize t^{-1}
\end{eqnarray}
$$
Now we differentiate:
$$
\begin{eqnarray}
d'(t) &=& -\small\frac{1}{2}t^{-2} \\[6pt]
&=& -\small\frac{1}{2t^2}\normalsize
\end{eqnarray}
$$
Finally, we substitute \(t=5\):
$$
\begin{eqnarray}
d'(5) &=& -\small\frac{1}{2(5^2)}\normalsize\\[6pt]
&=& -\small\frac{1}{2(25)}\normalsize \\[6pt]
&=& -\small\frac{1}{50}
\end{eqnarray}
$$
Example 12 (calculator)
SQA Higher Maths 2017 Paper 2 Q7
(a) Find the \(x\)-coordinate of the stationary point on the curve with equation \(y=6x-2\sqrt{\!x^3}\small.\)
(b) Hence, determine the greatest and least values of \(y\) in the interval \(1\!\leq\!x\!\leq\!9\small.\)
Show answer
(a) To find the \(x\)-coordinate of the stationary point, we first differentiate:
$$
\begin{eqnarray}
y &=& 6x-2\sqrt{\!x^3} \\[6pt]
&=& 6x-2x^{\large\frac{3}{2}\normalsize} \\[6pt]
\frac{dy}{dy} &=& 6-3x^{\large\frac12\normalsize} \\[6pt]
&=& 6-3\sqrt{x} \\[6pt]
\end{eqnarray}
$$
Now we find the stationary point:
$$
\begin{eqnarray}
\frac{dy}{dy} &=& 0 \\[6pt]
6-3\sqrt{x} &=& 0 \\[6pt]
6 &=& 3\sqrt{x} \\[6pt]
2 &=& \sqrt{x} \\[6pt]
x &=& 2^2 \\[6pt]
x &=& 4 \\[6pt]
\end{eqnarray}
$$
(b) The \(x\)-coordinate of the stationary point is within the interval \(1\!\leq\!x\!\leq\!9\small,\) so we have to evaluate \(y\) when \(x=1\small,\) \(x=4\) and \(x=9\small.\)
When \(x=1\small,\) \(y=6(1)-2\sqrt{\!1^3}=6-2=4\small.\)
When \(x=4\small,\) \(y=6(4)-2\sqrt{\!4^3}=24-2(8)=8\small.\)
When \(x=9\small,\) \(y=6(9)-2\sqrt{\!9^3}=54-2(27)=0\small.\)
So the least value is \(0\) and the greatest value is \(8\small.\)
Stationery supplies
Pukka Pad: A4 squared notepads
Uni-ball Eye: fine-tip rollerball pens
Example 13 (calculator)
SQA Higher Maths 2018 Paper 2 Q3
A function, \(f\small,\) is defined on the set of real numbers by \(f(x)=x^3-7x-6\small.\)
Determine whether \(f\) is increasing or decreasing when \(x=2\small.\)
Show answer
The process here is to find the derivative \(f'(x)\) and substitute \(x=2\) into it.
If \(f'(2)\) is positive, \(f\) is increasing when \(x=2\small.\) If negative, \(f\) is decreasing.
$$
\begin{eqnarray}
f'(x) &=& 3x^2-7 \\[6pt]
\therefore f'(2) &=& 3(2^2)-7 \\[6pt]
&=& 12-7 \\[6pt]
&=& 5 \\[6pt]
&\gt& 0 \\[6pt]
\end{eqnarray}
$$
So \(f\) is increasing when \(x=2\small.\)
Example 14 (non-calculator)
SQA Higher Maths 2022 Paper 1 Q12
Given that \(f(x)=4\tiny\ \normalsize sin\tiny\ \normalsize \left(3x-\large\frac{\pi}{3}\normalsize\right)\), evaluate \(f'(\large\frac{\pi}{6})\normalsize.\)
Show answer
First we differentiate, using the chain rule:
$$
\begin{eqnarray}
f'(x) &=& 4\times 3\tiny\ \normalsize cos\tiny\ \normalsize \left(3x-\small\frac{\pi}{3}\normalsize\right) \\[6pt]
&=& 12\,cos\tiny\ \normalsize \left(3x-\small\frac{\pi}{3}\normalsize\right) \\[6pt]
\end{eqnarray}
$$
Then we substitute \(x=\large\frac{\pi}{6}\normalsize\):
$$
\begin{eqnarray}
f'\small\left(\frac{\pi}{6}\right)\normalsize &=& 12\,cos\tiny\ \normalsize \left(\small\frac{3\pi}{6}-\small\frac{\pi}{3}\normalsize\right) \\[6pt]
&=& 12\,cos\tiny\ \normalsize \left(\small\frac{3\pi}{6}-\small\frac{2\pi}{6}\normalsize\right) \\[6pt]
&=& 12\,cos\tiny\ \normalsize \small\frac{\pi}{6}\normalsize \\[6pt]
&=& 12\,\small\left(\frac{\sqrt{3}}{2}\right)\normalsize \\[6pt]
&=& 6\sqrt{3}
\end{eqnarray}
$$
Example 15 (non-calculator)
SQA Higher Maths 2023 Paper 1 Q1
Given that \( y=x^{\frac{5}{3}}-\large\frac{10}{x^4}\normalsize,\) where \(x\neq 0\), find \( \large\frac{dy}{dx}\normalsize.\)
Show answer
Before differentiating, we need to express the second term in the form \(ax^n.\)
$$
\begin{eqnarray}
y &=& x^{\frac{5}{3}}-\small\frac{10}{x^4}\normalsize \\[6pt]
&=& x^{\frac{5}{3}}-10x^{-4}\normalsize
\end{eqnarray}
$$
Now that \(y\) is in the appropriate form, we are ready to differentiate:
$$
\begin{eqnarray}
\small\frac{dy}{dx}\normalsize &=& \small\frac{5}{3}\normalsize x^{\frac{2}{3}}+40x^{-5}
\end{eqnarray}
$$
There is no need to go any further than the line above, as the question doesn't specify the form of the answer, but if you prefer, it could be expressed as follows:
$$
\begin{eqnarray}
\small\frac{dy}{dx}\normalsize &=& \small\frac{5}{3}\normalsize\sqrt[\leftroot{-1}\uproot{5}\scriptstyle 3]{x^2}+\small\frac{40}{x^5}\normalsize
\end{eqnarray}
$$
Scientific calculators
Casio FX-85GTCW scientific calculator
Casio FX-991CW advanced calculator
Example 16 (calculator)
SQA Higher Maths 2023 Paper 2 Q10
Determine the range of values of \(x\) for which the function \(f(x)=2x^3+9x^2-24x+6\) is strictly decreasing.
Show answer
We differentiate and then fully factorise the derivative:
$$
\begin{eqnarray}
f'(x) &=& 6x^2+18x-24 \\[6pt]
&=& 6(x^2+3x-4) \\[6pt]
&=& 6(x+4)(x-1) \\[6pt]
\end{eqnarray}
$$
\(f'(x)=0\) at stationary points, so
$$
\begin{eqnarray}
x+4=0 &\ \small\textsf{or}\normalsize& x-1=0 \\[6pt]
x=-4 &\ \small\textsf{or}\normalsize& x=1
\end{eqnarray}
$$
To determine the interval in which the function is strictly decreasing, we can use a nature table:
$$ \begin{array} {|c|c|}
\hline x & \rightarrow & -4 & \rightarrow & 1 & \rightarrow \\
\hline f'(x) & + & 0 & - & 0 & + \\
\hline \end{array} $$
So \(f\) is strictly decreasing when \(-4\lt x\lt 1\small.\)
Example 17 (non-calculator)
SQA Higher Maths 2024 Paper 1 Q3
Given that \( y=(5x^2+3)^7\small,\) find \( \large\frac{dy}{dx}\small.\)
Show answer
This 2-mark question is a simple application of the chain rule.
$$
\begin{eqnarray}
\small\frac{dy}{dx}\normalsize &=& 7(5x^2+3)^{6}(10x) \\[6pt]
&=& 70x(5x^2+3)^6
\end{eqnarray}
$$
Example 18 (non-calculator)
SQA Higher Maths 2024 Paper 1 Q11
The function \(f\) is given by \(f(x)=12\sqrt[\leftroot{-1}\uproot{6}\scriptstyle 3]{x}\small,\) \(x\!\gt\!0\small.\) When \(x\!=\!a\) the rate of change of \(f\) with respect to \(x\) is \(1\small.\) Determine the value of \(a\small.\)
Show answer
First we prepare \(f(x)\) for differentiation:
$$
\begin{eqnarray}
f(x) &=& 12\sqrt[\leftroot{-1}\uproot{6}\scriptstyle 3]{x} \\[6pt]
&=& 12x^{\large\frac13}
\end{eqnarray}
$$
Now we differentiate:
$$
\begin{eqnarray}
f'(x) &=& 4x^{-\large\frac23} \\[6pt]
\end{eqnarray}
$$
Finally, we use the fact that \(f'(a)=1\) to find \(a\small.\)
$$
\begin{eqnarray}
4a^{-\large\frac23\normalsize} &=& 1 \\[6pt]
a^{-\large\frac23\normalsize} &=& \small\frac14 \\[6pt]
a^{\large\frac23\normalsize} &=& 4\\[6pt]
\sqrt[\leftroot{-1}\uproot{6}\scriptstyle 3]{a^2} &=& 4\\[6pt]
a^2 &=& 4^3\\[6pt]
a^2 &=& 64\\[6pt]
a &=& \sqrt{64}\\[6pt]
a &=& 8
\end{eqnarray}
$$
Note that we are told in the question that \(x\!\gt\!0\) so we shouldn't give \(a=-8\) as a second solution.
Need a Higher Maths tutor?
Just use this handy little widget and our partner Bark.com will help you find one.
Past paper questions
Other great resources