
National 5 Maths
Trigonometric Graphs
Course content
-
Working with the graphs of trigonometric functions:
- basic graphs
- amplitude
- vertical translation
- multiple angle
- phase angle
Textbook page references
- Zeta National 5+ Maths
pp.208-214
- TeeJay Maths Book N5 pp.156-169
- Leckie National 5 Maths pp.249-271
N5 Maths revision course
National5.com self-study course
Save £10 with discount code 'Maths.scot'
Basic trig graphs

- Period = 360° (width of one wave)
- Amplitude = 1 (half the height)
- Roots: 0°, 180°, 360°
- Maximum turning point (90,1)
- Minimum turning point (270,–1)

- Period = 360°
- Amplitude = 1
- Roots: 90°, 270°
- Maximum t.p. (0,1) and (360,1)
- Minimum turning point (180,–1)
- It's the sine graph moved left 90°

- Period = 180°
- Amplitude is undefined
- Roots: 0°, 180°, 360°
- No maximums or minimums
- "Asymptotes" at
= 90° and 270°
Change of amplitude
Now we will use the sine function to look at change of amplitude and the other three transformation types that you need to understand for Nat 5 Maths.
Example:
- Amplitude 5 (vertical stretch:
5) - Maximum turning point (90,5)
- Minimum turning point (270,–5)
Example:
- Amplitude
(vertical shrink: ÷2) - Maximum turning point (90,
- Minimum turning point (270,
)
Example:
- Amplitude remains 1
- Reflects in the
-axis (upside-down) - Maximum turning point (270,1)
- Minimum turning point (90,–1)
Example:
- Amplitude 3 (vertical stretch:
3) - The graph also reflects in the
-axis - Maximum turning point (270,3)
- Minimum turning point (90,–3)
Vertical translation
Example:
- The basic graph moves up 2
- Maximum turning point (90,3)
- Minimum turning point (270,1)
Example:
- The basic graph moves down 1
- Maximum turning point (90,0)
- Minimum turning point (270,–2)
Vertical transformations
Now let's combine a change of amplitude and a vertical translation.
Example:
- First, the amplitude doubles
- Then that graph moves up 3
- Maximum turning point (90,5)
- Minimum turning point (270,1)
Example:
- First, the amplitude halves
- Then that graph moves down 1
- Maximum turning point (90,
) - Minimum turning point (270,
)
Example:
- Amplitude
2 (double-height) - Reflect in the
-axis (upside-down) - Then move the graph up 5
- Maximum turning point (270,7)
- Minimum turning point (90,3)
Multiple angle
Example:
- Each
-value divides by 2 - Horizontal shrink: half-width
- The period is 360 ÷ 2 = 180°
- There are 2 cycles from 0° to 360°
- Roots 0°, 90°, 180°, ...
Example:
- Each
-value divides by , i.e. 3 - Horizontal stretch: triple-width
- The period is 360 ÷
= 1080° - There is
of a cycle from 0° to 360° - Roots 0°, 540°, 1080°, ...
Example:
- Each
-value divides by –4 - Horizontal shrink: quarter-width
- Also a reflection in the y-axis
- The period is 360 ÷ 4 = 90°
- There are 4 cycles from 0° to 360°
- Roots 0°, 45°, 90°, 135°, ...
- The SQA has never set a question with a negative multiple angle.
Phase angle
Example:
- Horizontal translation: right 60°
- Roots 60°, 240°, 420°, ...
Example:
- Horizontal translation: left 45°
- Roots –45°, 135°, 315°, ...
A useful way to remember:
- MINUS and RIGHT: 5 letters each
- PLUS and LEFT: 4 letters each
Horizontal transformations
Now let's combine a multiple angle and a phase angle. An unexpected thing happens: the phase angle always acts before the multiple angle. PM, not MP!
Example:
- First, we translate left 60°
- Then each
-value divides by 2 - The period is 360 ÷ 2 = 180°
- Roots: 60°, 150°, 240°, 330°, ...
Example:
- First, we translate right 30°
- Then each
-value divides by - The period is 360 ÷
= 720° - Roots: 60°, 420°, 780°, ...
2D transformations
Finally, we need to be able to combine horizontal and vertical transformations.
Example:
-
Horizontal:
- Translate left 25
- No multiple angle here
- The period remains 360°
-
Vertical:
- Stretch: amplitude becomes 3
- No reflection or translation
- Max. turning point (65,3)
- Min. turning point (245,–3)
Example:
-
Horizontal:
- No phase angle here
- All
-values divide by 3 - The period is 120°
-
Vertical:
- Stretch: amplitude becomes 2
- Reflect in the
-axis - Then translate down 4
- Max. value: –2
–1 – 4 = –2 - Max. turning point (90,–2)
- Min. value: –2
1 – 4 = –6 - Min. turning point (30,–6)
Example:
-
Horizontal:
- Translate right 30°
- Then
-values divide by 2 - The period is 180°
-
Vertical:
- Stretch: amplitude becomes 5
- Then translate up 1
- Max. value: 5
1 + 1 = 6 - Max. turning point (60,6)
- Min. value: 5
–1 + 1 = –4 - Min. turning point (150,–4)
So far, the SQA have only included two or three of the four transformation types in their questions, so that last example should have over-prepared you!
All past paper questions so far have involved a given graph, from which you need to identify either the equation or the coordinates of a turning point. Some past paper questions are explained below.
Example 1 (non-calculator)
SQA National 5 Maths 2015 P1 Q6
Part of the graph of

State the values of
Example 2 (non-calculator)
SQA National 5 Maths 2018 P1 Q6
Part of the graph of

State the values of
Recommended student book
Zeta Maths: National 5 Maths Textbook

Example 3 (non-calculator)
SQA National 5 Maths 2019 P1 Q13
Part of the graph of

The graph has a minimum turning point at A. State the coordinates of A.
Example 4 (non-calculator)
SQA National 5 Maths 2021 P1 Q13
The graph of

State the values of
N5 Maths practice papers
Non-calculator papers and solutions
Calculator papers and solutions

Example 5 (non-calculator)
SQA National 5 Maths 2022 P1 Q8
Part of the graph of

(a) State the value of
(b) State the value of
Example 6 (non-calculator)
SQA National 5 Maths 2023 P1 Q13
Part of the graph of

(a) State the value of
(b) State the value of
Need a Nat 5 Maths tutor?
Just use this handy little widget and our partner Bark.com will help you find one.
Past paper questions
Other great resources
Videos - Mr Graham Maths 1. Amplitude 2. Period 3. Vertical translation 4. Phase angle |
Videos - Mr Hamilton Online 1. Amplitude and period 2. Vertical shift 3. Horizontal shift 4. Summary: sin and cos 5. Trig graph exam questions |
Video - YouKenMaths |
Video - Tutorlene |
Notes and videos - Mistercorzi |
Notes and examples - Mearns Maths |
PowerPoint - MathsRevision.com |
Interactive graphing tool - NCTM |
• Detailed notes - BBC Bitesize • Test yourself - BBC Bitesize |
Notes - Maths4Scotland |
Notes - National5.com ![]() |
Notes - D R Turnbull |
Lesson notes - Maths 777 1. Basic, amplitude and period 2. Translations in either direction |
Examples - Maths Mutt 1. Sketching trig graphs 2. Amplitude and period |
Practice questions - Maths Hunter |
Worksheets - Starting Points Maths 1. Maximum and minimum values 2. Horizontal transformations 3. Complete workbook |
Exercises - Larkhall Academy Pages 22-29 Ex 1-3 |
Click here to study the trig graphs notes on National5.com.
You may also want to check out their Nat 5 Maths self-study course. We think it's excellent. If you decide to enrol, just use coupon code "Maths.scot" to get £10 discount.
⇦ Nat 5 topic list ⇧ Top of this page |