Higher Maths
Vectors

 Our generous sponsors 

Course content

  • Nat 5 vectors work is assumed
  • Resultant of 3D vector pathways
  • Working with collinearity
  • Internal division point of a line
  • Evaluating and applying the properties of scalar product
  • The angle between two vectors
  • Using and finding unit vectors including \(\underline{\boldsymbol i}, \underline{\boldsymbol j}, \underline{\boldsymbol k}\) as a basis.

Textbook page references

Find a Higher Maths tutor

Do you need a tutor for Higher Maths?
Click here to find a tutor in your area. 

×

Scalar product

\( \underline{\boldsymbol a} .\underline{\boldsymbol b} = \vert \underline{\boldsymbol a} \vert\,\vert \underline{\boldsymbol b} \vert\,cos\,\theta, \) where \(\theta\) is the angle between \(\underline{\boldsymbol a}\) and \(\underline{\boldsymbol b}.\)

\( \underline{\boldsymbol a} .\underline{\boldsymbol b} = a_1 b_1+a_2 b_2+a_3 b_3,\) where \( \underline{\boldsymbol a} = \left( \begin{matrix} a_1 \\ a_2 \\ a_3 \end{matrix} \right)\) and \(\underline{\boldsymbol b} = \left( \begin{matrix} \,b_1 \\ \,b_2 \\ \,b_3 \end{matrix} \right)\)

Example 1 (non-calculator)

Three vectors are defined as follows:
   \( \small\overrightarrow{\textsf{RS}} \normalsize = -3\underline{\boldsymbol i}+2\underline{\boldsymbol j}+\underline{\boldsymbol k}\)
   \( \small \overrightarrow{\textsf{ST}} \normalsize = \underline{\boldsymbol i}-3\underline{\boldsymbol j}+5\underline{\boldsymbol k}\)
   \( \small \overrightarrow{\textsf{PT}} \normalsize = 2\underline{\boldsymbol i}+\underline{\boldsymbol j}-3\underline{\boldsymbol k}\)
(a)  Find \(\small\overrightarrow{\textsf{RT}}\normalsize.\)
(b)  Hence, or otherwise, find \(\small\overrightarrow{\textsf{RP}}\normalsize.\)

Example 2 (non-calculator)

PQRS is a trapezium with \( \small \overrightarrow{\textsf{RQ}} \normalsize = 2\tiny\ \small \overrightarrow{\textsf{SP}} \normalsize \).

\( \small \overrightarrow{\textsf{PQ}} \normalsize \) and \( \small \overrightarrow{\textsf{RQ}} \normalsize \) represent vectors \( \underline{\boldsymbol u} \) and \( \underline{\boldsymbol v} \) respectively.

(a)  Express \( \small \overrightarrow{\textsf{RP}} \normalsize \) in terms of \( \underline{\boldsymbol u} \) and \( \underline{\boldsymbol v} \).
(b)  Express \( \small \overrightarrow{\textsf{RS}} \normalsize \) in terms of \( \underline{\boldsymbol u} \) and \( \underline{\boldsymbol v} \). Give your answer in its simplest form.

Example 3 (non-calculator)

Show that the points \(\small\textsf{A}\normalsize(-1,3,0),\) \(\small\textsf{B}\normalsize(2,-1,4)\) and \(\small\textsf{C}\normalsize(-7,11,-8)\) are collinear.

Recommended textbook

Zeta Maths: Higher Mathematics 
 Best price, direct from the publisher

Example 4 (non-calculator)

Show that the points \(\small\textsf{P}\normalsize(2,-6,8),\) \(\small\textsf{Q}\normalsize(0,-5,5)\) and \(\small\textsf{R}\normalsize(8,-9,0)\) are not collinear.

Example 5 (non-calculator)

(a)  Show that the points \(\small\textsf{F}\normalsize(-3,-5,9),\) \(\small\textsf{G}\normalsize(0,1,0)\) and \(\small\textsf{H}\normalsize(2,5,-6)\) are collinear.
(b)  State the ratio in which G divides FH.

Example 6 (non-calculator)

\(\small\textsf{A}\normalsize(9,-3,-8),\) \(\small\textsf{B}\normalsize(1,t,4)\) and \(\small\textsf{C}\normalsize(-1,2,7)\) are collinear.
(a)  State the ratio in which B divides AC.
(b)  Find the value of \(t.\)

Revision guides

How to Pass Higher Maths 
BrightRED Higher Maths Study Guide 

Example 7 (non-calculator)

R and T are the points \((7,-1,8)\) and \((-3,4,-7)\) respectively. Point S divides RT internally in the ratio \(2:3.\) Determine the coordinates of point S.

Example 8 (non-calculator)

Repeat Example 7, but this time use the section formula!

Example 9 (non-calculator)

A and B are the points \((-4,1,-3)\) and \((0,-6,1)\) respectively. \(k\,\small\overrightarrow{\textsf{AB}}\normalsize\) is a unit vector, where \(k \gt 0.\) Determine the value of \(k.\)

Practice papers

Essential Higher Maths Exam Practice 
Higher Practice Papers: Non-Calculator 
Higher Practice Papers: Calculator 

Example 10 (non-calculator)

Vectors \(\underline{\boldsymbol u}=-3\underline{\boldsymbol i}+2\underline{\boldsymbol j}+n\underline{\boldsymbol k}\) and \(\underline{\boldsymbol v}=2\underline{\boldsymbol i}+5\underline{\boldsymbol j}+2\underline{\boldsymbol k}\) are perpendicular. Determine the value of \(n\).

Example 11 (calculator)

Points A, B and C are \((-7,-3,-6),\) \((5,-2,6)\) and \((7,3,-8)\) respectively. Find the angle ABC.

Example 12 (non-calculator)

SQA Higher Maths 2015 Paper 1 Q1

Vectors \(\underline{\boldsymbol u}=8\underline{\boldsymbol i}+2\underline{\boldsymbol j}-\underline{\boldsymbol k}\) and \(\underline{\boldsymbol v}=-3\underline{\boldsymbol i}+t\underline{\boldsymbol j}-6\underline{\boldsymbol k}\) are perpendicular. Determine the value of \(t\).

Stationery supplies

Pukka Pad: A4 squared notepads 
Uni-ball Eye: fine-tip rollerball pens 

Example 13 (calculator)

SQA Higher Maths 2018 Paper 2 Q2

Vectors \(\underline{\boldsymbol u}\) and \(\underline{\boldsymbol v}\) are defined by \(\underline{\boldsymbol u} = \left( \begin{matrix} -1\, \\ \phantom{-}4\, \\ -3\, \end{matrix} \right)\) and \(\underline{\boldsymbol v} = \left( \begin{matrix} -\!7\, \\ \phantom{-}\!8\, \\ \phantom{-}\!5\, \end{matrix} \right)\small.\)

(a)  Find \(\underline{\boldsymbol u}\boldsymbol .\underline{\boldsymbol v}\small.\)
(b)  Calculate the acute angle between \(\underline{\boldsymbol u}\) and \(\underline{\boldsymbol v}\small.\)

Example 14 (non-calculator)

SQA Higher Maths 2019 Paper 1 Q9

Vectors \(\underline{\boldsymbol u}\) and \(\underline{\boldsymbol v}\) have components \(\left( \begin{matrix} \phantom{-}p \\ -2 \\ \phantom{-}4\, \end{matrix} \right)\) and \(\left( \begin{matrix} \ 2p\!+\!16\, \\ -3\, \\ \phantom{-}\!6\, \end{matrix} \right)\!\small,\normalsize\ p\in\mathbb R\small.\)

(a) (i)   Find an expression for \(\underline{\boldsymbol u}\boldsymbol .\underline{\boldsymbol v}\small.\)
     (ii)  Determine the values of \(p\) for which \(\underline{\boldsymbol u}\) and \(\underline{\boldsymbol v}\) are perpendicular.
(b)  Determine the value of \(p\) for which \(\underline{\boldsymbol u}\) and \(\underline{\boldsymbol v}\) are parallel.

Scientific calculators

Casio FX-85GTCW scientific calculator 
Casio FX-991CW advanced calculator 

Example 15 (calculator)

SQA Higher Maths 2019 Paper 2 Q14

The vectors \(\underline{\boldsymbol u}\) and \(\underline{\boldsymbol v}\) are such that
•  \(\vert\underline{\boldsymbol u}\vert =4\)
•  \(\vert\underline{\boldsymbol v}\vert =5\)
•  \(\underline{\boldsymbol u}.(\underline{\boldsymbol u}+\underline{\boldsymbol v})=21\)
Determine the size of the angle between the vectors \(\underline{\boldsymbol u}\) and \(\underline{\boldsymbol v}\).

Example 16 (non-calculator)

SQA Higher Maths 2021 Paper 1 Q12

Points A, B and C are collinear, with B dividing AC.
•  A has coordinates \((4,2,-5)\)
•  B has coordinates \((7,-4,1)\)
•  \(\vert \small\overrightarrow{\textsf{BC}}\normalsize \vert =6\)
(a) (i)  Find \(\vert \small\overrightarrow{\textsf{AB}}\normalsize \vert\small.\)
     (ii)  State the ratio in which B divides AC.
(b)  Determine the coordinates of C.

Example 17 (calculator)

SQA Higher Maths 2021 Paper 2 Q11

(a)   Given A\((3,1,8)\small,\) B\((-2,5,1)\) and C\((7,-6,3)\small,\) express \(\small\overrightarrow{\textsf{AB}}\normalsize\) and \(\small\overrightarrow{\textsf{AC}}\normalsize\) in component form.
(b)   Hence calculate the size of angle BAC.

Need a Higher Maths tutor?

Just use this handy little widget and our partner Bark.com will help you find one.

Past paper questions

Vector pathways:
Specimen Paper 2 Q4
2015 Paper 2 Q6
2016 Paper 1 Q7
2017 Paper 2 Q5(a)
2018 Paper 1 Q9
2018 Paper 1 Q12
2019 Paper 2 Q3(a)
2021 Paper 2 Q13
Collinearity:
Specimen Paper 2 Q12 (with circles)
2015 Paper 1 Q9 (with straight line)
2017 Paper 2 Q10(a) (2D)
2019 Paper 1 Q5
2021 Paper 1 Q12
Dividing a line segment in a ratio:
2016 Paper 1 Q11
2017 Paper 2 Q5(b)
2018 Paper 1 Q5
2019 Paper 1 Q5
2019 Paper 2 Q3(b)
2021 Paper 1 Q12
Scalar product:
Specimen Paper 1 Q5
Specimen Paper 2 Q4
2015 Paper 1 Q1
2015 Paper 2 Q6
2016 Paper 2 Q5
2017 Paper 1 Q5
2017 Paper 2 Q5(c)
2018 Paper 2 Q2
2019 Paper 1 Q9
2019 Paper 2 Q14
2021 Paper 1 Q14
2021 Paper 2 Q11(b)

Other great resources

Detailed notes - HSN
Detailed notes - Rothesay Academy
Revision notes - BBC Bitesize
1. Geometric vectors
2. Scalar product
Notes - Airdrie Academy
Notes and examples - Maths Mutt
Notes - Maths4Scotland
Key points - Perth Academy
Notes and videos - Mistercorzi
1. Vectors: basic properties
2. Position vectors and applications
3. Scalar product and applications
4. Working with vectors
Lesson notes - Maths 777
1. Magnitude; unit vectors
2. Position vectors, coordinates
3. Collinearity; dividing a line
4. Vector paths
5. Scalar product; angles
6. Properties of scalar product
Videos - Larbert High School
1. Unit vectors
2. Position vectors
3. Basis vectors
4. 3D collinearity
5. Dividing a line in a given ratio
6. Scalar product
7. Scalar product from components
8. Angle between vectors
9. Perpendicular vectors
10. Properties of scalar products
Videos - Maths180.com
Videos - Mr Thomas Maths
Videos - Siōbhán McKenna
Worksheets - Brannock High School
1. Section formula (Answers)
2. Scalar product (Answers)
3. Angle between vectors (Answers)

⇦ Higher topic list  ⇧ Top of this page