\( \underline{\boldsymbol a} .\underline{\boldsymbol b} = \vert \underline{\boldsymbol a} \vert\,\vert \underline{\boldsymbol b} \vert\,cos\,\theta, \) where \(\theta\) is the angle between \(\underline{\boldsymbol a}\) and \(\underline{\boldsymbol b}.\)
(a) Express \( \small \overrightarrow{\textsf{RP}} \normalsize \) in terms of \( \underline{\boldsymbol u} \) and \( \underline{\boldsymbol v} \). (b) Express \( \small \overrightarrow{\textsf{RS}} \normalsize \) in terms of \( \underline{\boldsymbol u} \) and \( \underline{\boldsymbol v} \). Give your answer in its simplest form.
Show that the points \(\small\textsf{A}\normalsize(-1,3,0),\) \(\small\textsf{B}\normalsize(2,-1,4)\) and \(\small\textsf{C}\normalsize(-7,11,-8)\) are collinear.
\(\small\overrightarrow{\textsf{AC}}\normalsize=-2\small\overrightarrow{\textsf{AB}}\normalsize\) so \(\small\overrightarrow{\textsf{AC}}\normalsize\) and \(\small\overrightarrow{\textsf{AB}}\normalsize\) are parallel. A is a common point, so A, B and C are collinear.
Note: The course specification specifically states that candidates should "include the phrases ‘parallel’ and ‘common point’ in their answers to show collinearity," so please be careful to use this wording.
Show that the points \(\small\textsf{P}\normalsize(2,-6,8),\) \(\small\textsf{Q}\normalsize(0,-5,5)\) and \(\small\textsf{R}\normalsize(8,-9,0)\) are not collinear.
The results of the division are not all equal so \(\small\overrightarrow{\textsf{PR}}\normalsize\) is not a multiple of \(\small\overrightarrow{\textsf{PQ}}\normalsize .\) This tells us that the two vectors are not parallel, and for that reason the points P, Q and R cannot be collinear.
Example 5 (non-calculator)
(a) Show that the points \(\small\textsf{F}\normalsize(-3,-5,9),\) \(\small\textsf{G}\normalsize(0,1,0)\) and \(\small\textsf{H}\normalsize(2,5,-6)\) are collinear. (b) State the ratio in which G divides FH.
(a) Because G divides FH, it makes sense to choose two vectors that both involve G.
\(\small\overrightarrow{\textsf{FG}}\normalsize=\frac{3}{2}\small\overrightarrow{\textsf{GH}}\normalsize\) so \(\small\overrightarrow{\textsf{FG}}\normalsize\) and \(\small\overrightarrow{\textsf{GH}}\normalsize\) are parallel. G is a common point, so F, G and H are collinear.
(b) With experience, you can usually write down these ratios without any further working, but a more formal method would be to start with the connection between \(\small\overrightarrow{\textsf{FG}}\normalsize\) and \(\small\overrightarrow{\textsf{GH}}\normalsize\) from part (a) above:
\(\small\textsf{A}\normalsize(9,-3,-8),\) \(\small\textsf{B}\normalsize(1,t,4)\) and \(\small\textsf{C}\normalsize(-1,2,7)\) are collinear. (a) State the ratio in which B divides AC. (b) Find the value of \(t.\)
(a) We are told that the three points are collinear, so it is sufficient to consider any component.
R and T are the points \((7,-1,8)\) and \((-3,4,-7)\) respectively. Point S divides RT internally in the ratio \(2:3.\) Determine the coordinates of point S.
Note: We don't like the section formula and won't use it in this example. It might be a bit quicker, but it's ugly, it's easy to forget and it discourages logical process. We much prefer this method:
$$
\begin{eqnarray}
\small\overrightarrow{\textsf{RS}}\normalsize : \small\overrightarrow{\textsf{ST}}\normalsize &=& 2:3 \\[6pt]
3\,\small\overrightarrow{\textsf{RS}}\normalsize &=& 2\,\small\overrightarrow{\textsf{ST}}\normalsize \\[6pt]
3\,\left(\underline s - \underline r\right) &=& 2\,\left(\underline t - \underline s\right) \\[6pt]
3\underline s - 3\underline r &=& 2\underline t - 2\underline s \\[6pt]
3\underline s + 2\underline s &=& 2\underline t + 3\underline r \\[6pt]
5\underline s &=& 2\underline t + 3\underline r \\[6pt]
&=& 2\left( \begin{matrix} -3 \\ \phantom{-}4 \\ -7 \end{matrix}\right) + 3\left( \begin{matrix} \phantom{-}7 \\ -1 \\ \phantom{-}8 \end{matrix}\right) \\[6pt]
&=& \left( \begin{matrix} -6 \\ \phantom{-}8 \\ -14 \end{matrix}\right) + \left( \begin{matrix} \phantom{-}21 \\ -3 \\ \phantom{-}24 \end{matrix}\right) \\[6pt]
&=& \left( \begin{matrix} 15 \\ \phantom{.}5 \\ 10 \end{matrix}\right) \\[6pt]
\underline s &=& \left( \begin{matrix} \phantom{.}3\phantom{.} \\ \phantom{.}1\phantom{.} \\ \phantom{.}2\phantom{.} \end{matrix}\right)
\end{eqnarray}
$$
So the coordinates of S are \((3,1,2).\)
Example 8 (non-calculator)
Repeat Example 7, but this time use the section formula!
Ugh! No! The section formula is horrible! Well, OK, if we must...
First a reminder of the question:
Question: R and T are the points \((7,-1,8)\) and \(\small\textsf{C}\normalsize(-3,4,-7)\) respectively. Point S divides RT internally in the ratio \(2:3.\) Determine the coordinates of point S.
Note: We absolutely hate the section formula – but whether you agree or disagree, the good news is that the SQA won't tell you what method to use for questions like this. Use what suits you best.
Example 9 (non-calculator)
A and B are the points \((-4,1,-3)\) and \((0,-6,1)\) respectively. \(k\,\small\overrightarrow{\textsf{AB}}\normalsize\) is a unit vector, where \(k \gt 0.\) Determine the value of \(k.\)
First we find the magnitude of the vector \(\small\overrightarrow{\textsf{AB}}\normalsize.\)
Now, as \(\vert \small\overrightarrow{\textsf{AB}}\normalsize \vert =9\) and \(\vert k\,\small\overrightarrow{\textsf{AB}}\normalsize \vert =1,\) we can conclude that \(k=\frac{1}{9}.\)
Vectors \(\underline{\boldsymbol u}=-3\underline{\boldsymbol i}+2\underline{\boldsymbol j}+n\underline{\boldsymbol k}\) and \(\underline{\boldsymbol v}=2\underline{\boldsymbol i}+5\underline{\boldsymbol j}+2\underline{\boldsymbol k}\) are perpendicular. Determine the value of \(n\).
Questions to do with the angle between vectors always use the scalar product, as defined at the top of this page. The two definitions are included on the formulae list in your exams.
Because \(\underline u\) and \(\underline v\) are perpendicular, we know that \(\underline u . \underline v=0.\) This is because \(cos\ 90^\circ=0.\)
Vectors \(\underline{\boldsymbol u}=8\underline{\boldsymbol i}+2\underline{\boldsymbol j}-\underline{\boldsymbol k}\) and \(\underline{\boldsymbol v}=-3\underline{\boldsymbol i}+t\underline{\boldsymbol j}-6\underline{\boldsymbol k}\) are perpendicular. Determine the value of \(t\).
Because \(\underline u\) and \(\underline v\) are perpendicular, we know that \(\underline u . \underline v=0.\) This is because \(cos\ 90^\circ=0.\)
Vectors \(\underline{\boldsymbol u}\) and \(\underline{\boldsymbol v}\) have components \(\left( \begin{matrix} \phantom{-}p \\ -2 \\ \phantom{-}4\, \end{matrix} \right)\) and \(\left( \begin{matrix} \ 2p\!+\!16\, \\ -3\, \\ \phantom{-}\!6\, \end{matrix} \right)\!\small,\normalsize\ p\in\mathbb R\small.\)
(a) (i) Find an expression for \(\underline{\boldsymbol u}\boldsymbol .\underline{\boldsymbol v}\small.\) (ii) Determine the values of \(p\) for which \(\underline{\boldsymbol u}\) and \(\underline{\boldsymbol v}\) are perpendicular. (b) Determine the value of \(p\) for which \(\underline{\boldsymbol u}\) and \(\underline{\boldsymbol v}\) are parallel.
(a) (i) We calculate the scalar product using the components.
(a) (ii) If \(\underline u\) and \(\underline v\) are perpendicular, then \(\underline u . \underline v=0\) because \(cos\ 90^\circ=0\small.\) So we solve:
(b) If two vectors are parallel, then one is a scalar multiple of the other.
Examining the \(\underline j\) and \(\underline k\) components of \(\underline u\) and \(\underline v\small,\) we see that \(-3=\frac32\!\times\!\!-\!2\) and \(6=\frac32\!\times\!4\small.\)
So if \(\underline u\) and \(\underline v\) are parallel, then \(\underline v=\frac32\underline u\small.\)
Now we consider the \(\underline i\) components of each vector:
$$
\begin{eqnarray}
2p+16 &=& \small\frac32\normalsize p \\[6pt]
4p+32 &=& 3p \\[6pt]
4p-3p &=& -\!32 \\[6pt]
p &=& -\!32
\end{eqnarray}
$$
The vectors \(\underline{\boldsymbol u}\) and \(\underline{\boldsymbol v}\) are such that
• \(\vert\underline{\boldsymbol u}\vert =4\)
• \(\vert\underline{\boldsymbol v}\vert =5\)
• \(\underline{\boldsymbol u}.(\underline{\boldsymbol u}+\underline{\boldsymbol v})=21\)
Determine the size of the angle between the vectors \(\underline{\boldsymbol u}\) and \(\underline{\boldsymbol v}\).
We start by expanding the bracket and using the fact that the angle between \(\underline{u}\) and itself is \(0^\circ.\)
Points A, B and C are collinear, with B dividing AC.
• A has coordinates \((4,2,-5)\)
• B has coordinates \((7,-4,1)\)
• \(\vert \small\overrightarrow{\textsf{BC}}\normalsize \vert =6\) (a) (i) Find \(\vert \small\overrightarrow{\textsf{AB}}\normalsize \vert\small.\) (ii) State the ratio in which B divides AC. (b) Determine the coordinates of C.
(a) (i) First we find \(\small\overrightarrow{\textsf{AB}}\) in component form, and then we find its magnitude.
(a) (ii) \(\vert \small\overrightarrow{\textsf{AB}}\normalsize \vert=9\) and we are told that \(\vert \small\overrightarrow{\textsf{BC}}\normalsize \vert = 6\small.\)
So B divides AC in the ratio \(9:6=3:2\small.\)
(b) There are several reasonable ways to do this. Here is one suitable method.
Draw yourself a quick sketch if you don't immediately see why \(\small\overrightarrow{\textsf{AC}}\normalsize=\frac{5}{3}\small\,\overrightarrow{\textsf{AB}}.\)
(a) Given A\((3,1,8)\small,\)B\((-2,5,1)\) and C\((7,-6,3)\small,\) express \(\small\overrightarrow{\textsf{AB}}\normalsize\) and \(\small\overrightarrow{\textsf{AC}}\normalsize\) in component form. (b) Hence calculate the size of angle BAC.
(a) This straightforward question was worth 6 marks: 2 for (a) and 4 for (b).
(b) Both vectors from part (a) start at the point A, so there are no complications here. We can just use the vectors \(\small\overrightarrow{\textsf{AB}}\normalsize\) and \(\small\overrightarrow{\textsf{AC}}\normalsize\) to find the angle BAC.
First, we use the components to calculate the scalar product: