National 5 Maths
Vectors

 Our generous sponsors 

Course content

  • Adding or subtracting 2D vector pathways using directed line segments
  • Adding or subtracting 2D or 3D vectors using components
  • Calculating the magnitude of a 2D or 3D vector.
×

Magnitude

Magnitude means length.

The magnitude of a vector \(\boldsymbol v\) is written in print as \(\vert\boldsymbol v \vert\) and in handwriting as \(\vert\underline v \vert\small.\)

Similarly, the magnitude of \(\small\overrightarrow{\textsf{AB}}\) is written as \(\vert\small\overrightarrow{\textsf{AB}}\normalsize\vert\small.\)

If a vector is given in component form, we can use either 2D or 3D Pythagoras to find its magnitude.

Textbook page references

Notation

  • \( \small \overrightarrow{\textsf{AB}} \normalsize\) represents the vector from point A to point B.
  • Lower case letters are also used to represent vectors.
    • In handwriting, they are underlined, like this: \( \underline u \)
    • In print, they are in bold, like this: \( \boldsymbol u \)

Key idea

  • For any three points A, B and C,  \( \small \overrightarrow{\textsf{AC}} = \overrightarrow{\textsf{AB}} + \overrightarrow{\textsf{BC}} \normalsize \).
  • Think of this as going from A to B and then continuing from B to C. In other words: from A to C via B.
  • It's the same resultant journey whether we go via B or not. We start at A and end at C, so the vectors are equal. Vectors only care about the end-points, not the pathway.

N5 Maths revision course

National5.com self-study course 
Save £10 with discount code 'Maths.scot'

Example 1 (non-calculator)

In the diagram below, \( \boldsymbol u \), \( \boldsymbol v \) and \( \boldsymbol w \) represent \( \small \overrightarrow{\textsf{AB}} \normalsize\),  \( \small \overrightarrow{\textsf{BC}} \normalsize\) and \( \small \overrightarrow{\textsf{AC}} \normalsize\) respectively.

Express \( \boldsymbol v \) in terms of \( \boldsymbol u \) and \( \boldsymbol w \).

Example 2 (non-calculator)

PQRS is a trapezium with \( \small \overrightarrow{\textsf{RQ}} \normalsize = 2\tiny\ \small \overrightarrow{\textsf{SP}} \normalsize \).

\( \small \overrightarrow{\textsf{PQ}} \normalsize \) and \( \small \overrightarrow{\textsf{RQ}} \normalsize \) represent vectors \( \boldsymbol u \) and \( \boldsymbol v \) respectively.

(a)  Express \( \small \overrightarrow{\textsf{RP}} \normalsize \) in terms of \( \boldsymbol u \) and \( \boldsymbol v \).
(b)  Express \( \small \overrightarrow{\textsf{RS}} \normalsize \) in terms of \( \boldsymbol u \) and \( \boldsymbol v \). Give your answer in its simplest form.

Example 3 (non-calculator)

Given \( \boldsymbol u = \left( \begin{matrix} -4 \\ \phantom{-}5 \end{matrix} \right) \) and  \( \boldsymbol v = \left( \begin{matrix} \phantom{-}3 \\ -1 \end{matrix} \right) \), find:
  (a)\( \:\:\ \boldsymbol u + \boldsymbol v \LARGE \phantom{G} \normalsize \)
  (b)\( \:\:\ \boldsymbol u - \boldsymbol v \LARGE \phantom{G} \normalsize \)
  (c)\( \:\:\ 2\boldsymbol u - 3\boldsymbol v \LARGE \phantom{G} \normalsize \)
  (d)\( \:\:\ \frac{1}{2} \boldsymbol u + \boldsymbol v \LARGE \phantom{G} \normalsize \)

Recommended student book

Zeta Maths: National 5 Maths Textbook 
 Best price, direct from the publisher

Example 4 (non-calculator)

Given \( \boldsymbol p = \left( \begin{matrix} \phantom{-}3 \\ -2 \\ \phantom{-}1 \end{matrix} \right) \) and  \( \boldsymbol q = \left( \begin{matrix} \phantom{-}5 \\ \phantom{-}0 \\ -3 \end{matrix} \right) \), find:
  (a)\( \:\:\ 2\boldsymbol p - \boldsymbol q \LARGE \phantom{G} \normalsize \)
  (b)\( \:\:\ \frac{1}{2}\left(\boldsymbol p - \boldsymbol q \right) \LARGE \phantom{G} \normalsize \)

Example 5 (calculator)

Find \( \vert \boldsymbol v \vert \), the magnitude of vector \( \boldsymbol v = \left( \begin{matrix} \phantom{-}45 \\ -28 \end{matrix} \right) \).

Find a Maths tutor

Do you need a National 5 Maths tutor?
Click here to find a tutor in your area. 

×

Example 6 (calculator)

Find \( \vert \boldsymbol r \vert \), the magnitude of vector \( \boldsymbol r = \left( \begin{matrix} \phantom{-}8 \\ -19 \\ -4 \end{matrix} \right) \).

Example 7 (non-calculator)

Find \( \vert \boldsymbol a - \boldsymbol b \vert \), where \( \boldsymbol a = \left( \begin{matrix} \phantom{.}5\phantom{.} \\ \phantom{.}6\phantom{.} \\ \end{matrix} \right) \) and \( \boldsymbol b = \left( \begin{matrix} \phantom{.}9\phantom{.} \\ \phantom{.}4\phantom{.} \\ \end{matrix} \right) \). Express your answer as a surd in its simplest form.

Example 8 (non-calculator)

The diagram shows a rectangular-based pyramid, relative to the coordinate axes.

B is the point (8,6,0).

The apex D is directly above the centre of the base.

The height of the pyramid is 7 units.

(a) Express \( \small \overrightarrow{\textsf{AC}} \normalsize\) in component form.
(b) Express \( \small \overrightarrow{\textsf{AD}} \normalsize\) in component form.
(c) Determine the exact value of \( \vert \small \overrightarrow{\textsf{AD}} \normalsize \vert\small.\)

Recommended revision guides

How to Pass National 5 Maths 
BrightRED N5 Maths Study Guide 

Example 9 (calculator)

SQA National 5 Maths 2016 P2 Q3

The diagram below shows parallelogram ABCD.

\(\small \overrightarrow{\textsf{AB}}\) represents vector \(\boldsymbol u\) and \(\small \overrightarrow{\textsf{BC}}\) represents vector \(\boldsymbol v\small.\)
Express \(\small \overrightarrow{\textsf{BD}}\) in terms of \(\boldsymbol u\) and \(\boldsymbol v\small.\)

Example 10 (calculator)

SQA National 5 Maths 2018 P2 Q10

In the diagram below, \(\small \overrightarrow{\textsf{AB}}\) and \(\small \overrightarrow{\textsf{EA}}\) represent the vectors \(\boldsymbol u\) and \(\boldsymbol w\) respectively.

•  \(\small \overrightarrow{\textsf{ED}}=2\small\,\overrightarrow{\textsf{AB}}\)
•  \(\small \overrightarrow{\textsf{EA}}=2\small\,\overrightarrow{\textsf{DC}}\)
Express \(\small \overrightarrow{\textsf{BC}}\) in terms of \(\boldsymbol u\) and \(\boldsymbol w\small.\)
Give your answer in its simplest form.

N5 Maths practice papers

Non-calculator papers and solutions 
Calculator papers and solutions 

Example 11 (non-calculator)

SQA National 5 Maths 2019 P1 Q10

In triangle PQR, \(\small\overrightarrow{\textsf{PR}}=\left( \begin{matrix} \phantom{-}6 \\ -4 \end{matrix} \right)\) and \(\small \overrightarrow{\textsf{RQ}}=\left( \begin{matrix} -1 \\ \phantom{-}8 \end{matrix} \right)\small.\)

(a)  Express \(\small\overrightarrow{\textsf{PQ}}\) in component form.

M is the midpoint of PR.
(b)  Express \(\small\overrightarrow{\textsf{MQ}}\) in component form.

Example 12 (non-calculator)

SQA National 5 Maths 2021 P2 Q5

The vectors \( \boldsymbol u \) and \( \boldsymbol v \) are shown in the diagram below.

Find the resultant vector \( \boldsymbol u - \boldsymbol v\small.\)
Express your answer in component form.

Example 13 (calculator)

SQA National 5 Maths 2021 P2 Q17

The triangle ABC is shown below

\(\small\overrightarrow{\textsf{AB}}\normalsize =\boldsymbol u\) and \(\small\overrightarrow{\textsf{AC}}\normalsize=\boldsymbol t\small.\)
G is the point such that CG = \(\large\frac{1}{3}\)CB.
Express \(\small\overrightarrow{\textsf{AG}}\) in terms of \(\boldsymbol u\) and \(\boldsymbol t\small.\)
Give your answer in simplest form.

Example 14 (non-calculator)

SQA National 5 Maths 2024 P1 Q4

Given \( \boldsymbol a = \left( \begin{matrix} \phantom{-}3 \\ \phantom{-}4 \\ -1 \end{matrix} \right) \) and  \( \boldsymbol b = \left( \begin{matrix} 5 \\ 3 \\ 2 \end{matrix} \right)\small, \) find the resultant vector \(3\boldsymbol a + \boldsymbol b\small.\) Express your answer in component form.

Need a Nat 5 Maths tutor?

Just use this handy little widget and our partner Bark.com will help you find one.

Maths.scot worksheet

Vectors worksheet
Answer sheet
• See all National 5 Maths worksheets

Past paper questions

All past paper questions by topic
Vector pathways:
2016 Paper 2 Q3
2017 Specimen Paper 1 Q11
2017 Paper 2 Q8
2018 Paper 2 Q10
2021 Paper 2 Q17
• 2024 Paper 2 Q14
Vector components:
2014 Paper 1 Q4
2015 Paper 2 Q5
2016 Paper 1 Q1
2018 Paper 1 Q4
2019 Paper 1 Q10
2021 Paper 2 Q5
2024 Paper 1 Q4
Magnitude:
2015 Paper 2 Q4
2017 Specimen Paper 1 Q3
2017 Paper 2 Q1
2018 Paper 2 Q3
2019 Paper 2 Q2
2021 Paper 1 Q1

Other great resources

Videos - Maths180.com
Videos - Mr Graham Maths
1. Introduction to vectors
2. Alternative routes
3. Magnitude of a vector
4. Scalar multiplication
5. Vector pathways
Video - Mr Hamilton Online
Resultant and magnitude
Videos - YouKenMaths
1. 2D vectors
2. Vector journeys: 1 of 4
3. Vector journeys: 2 of 4
4. Vector journeys: 3 of 4
5. Vector journeys: 4 of 4
6. Worked examples
Notes and videos - Mistercorzi
1. 2D vectors
2. 3D vectors
Theory guide - National 5 Maths
PowerPoint - MathsRevision.com
Detailed notes - BBC Bitesize
1. 2D vectors
2. Vector components
3. Magnitude of a vector
Notes - National5.com
Notes - D R Turnbull
Lesson notes - Maths 777
1. Vector arithmetic, resultant
2. Magnitude of a vector
Notes and examples - Maths Mutt
Practice questions - Maths Hunter
Worksheet - Cumnock Academy
Essential Skills worksheet
Vectors worksheet (Answers)
Exercises - Larkhall Academy
Pages 19-32 Ex 1-8
×

Click here to study the vectors notes on National5.com.

You may also want to check out their Nat 5 Maths self-study course. We think it's excellent. If you decide to enrol, just use coupon code "Maths.scot" to get £10 discount.


⇦ Nat 5 topic list  ⇧ Top of this page