National 5 Maths Area of a Triangle
Course content
Calculate the area of a triangle using the trigonometric formula:
$$ \large Area = \small \frac{1}{2} \small\ \large ab\ sin\ C \normalsize $$
Textbook page references
Key ideas
This formula works in any triangle: right-angled or non-right angled.
This formula only needs us to know two the lengths of two sides and the angle enclosed between them.
Unlike the other formula for the area of a triangle, \(A\!\,=\!\,\frac{1}{2}bh \), we don't need to know the vertical height.
N5 Maths revision course
National5.com self-study course
Save £10 with discount code 'Maths.scot'
Example 1 (calculator)
In the triangle below, BC = 9 mm, AC = 15 mm and angle C = 60°.
Calculate the area of triangle ABC.
Show answer
In this example, the vertex letters A, B and C exactly match the formula. So:
$$
\begin{eqnarray}
\small\textsf{Area}\normalsize &=& \small\frac{1}{2} \ \normalsize ab\ sin\ C \\[6pt]
&=& \small\frac{1}{2}\normalsize \times 9 \times 15\ sin\ 60^\circ \\[6pt]
&\approx& 58.5\ \small\textsf{mm²} \\[12pt]
\end{eqnarray}
$$
Example 2 (non-calculator)
In the triangle below, AB = 5 cm, BC = 3 cm and sin B = \( \frac{1}{\sqrt{2}} \).
Calculate the area of triangle ABC, expressing your answer as a fully simplified surd with a rational denominator.
Show answer
This question would be suitable for Paper 1. We have been told sin B, not B itself.
In this example, the vertex letters A, B and C don't match the formula. So we can rewrite the formula using the different letters.
The SQA has never combined area of a triangle with the surds topic, but there is no reason why they shouldn't!
$$
\begin{eqnarray}
\small\textsf{Area}\normalsize &=& \small\frac{1}{2}\normalsize\small \ \normalsize ac\ sin\ B\:\ \small\textsf{(same formula really!)}\normalsize\\[6pt]
&=& \small\frac{1}{2}\normalsize \times 3 \times 5\ \times \small \frac{1}{\sqrt{2}}\normalsize \\[6pt]
&=& \frac{15}{2 \sqrt{2}} \\[6pt]
&=& \frac{15}{2 \sqrt{2}}\times\frac{\sqrt{2}}{\sqrt{2}} \ \small\textsf{(rationalising)}\normalsize\\[6pt]
&=& \frac{15\sqrt{2}}{4}\ \small\textsf{cm²}
\end{eqnarray}
$$
Recommended student book
Zeta Maths: National 5 Maths Textbook
Best price, direct from the publisher
Example 3 (calculator)
Calculate the area of an equilateral triangle with side lengths of 5 cm.
Show answer
This question relies on our knowledge that equilateral triangles contain three 60° angles.
$$
\begin{eqnarray}
\small\textsf{Area}\normalsize &=& \small\frac{1}{2}\normalsize\small \ \normalsize ab\ sin\ C \\[6pt]
&=& \small\frac{1}{2}\normalsize \times 5 \times 5 \times sin\ 60^\circ \\[6pt]
&\approx& 10.8\ \small\textsf{cm²}
\end{eqnarray}
$$
Example 4 (calculator)
Calculate the area of a regular hexagon with side length 10 cm, giving your answer correct to 3 significant figures.
Show answer
This question relies on our knowledge that a regular hexagon consists of 6 equilateral triangles.
$$
\begin{eqnarray}
\small\textsf{Area}\normalsize &=& 6 \times \small\frac{1}{2}\normalsize\small \ \normalsize ab\ sin\ C\\[6pt]
&=& 6 \times \small\frac{1}{2}\normalsize \times 10 \times 10 \times sin\ 60^\circ \\[6pt]
&=& 259.807... \\[6pt]
&\approx& 260\ \small\textsf{cm²}\ \small\textsf{(correct to 3 s.f.)}\normalsize
\end{eqnarray}
$$
Example 5 (calculator)
A triangle of area 50 cm2 has two sides with lengths 12 cm and 10 cm. The angle between these two sides is acute. Calculate this angle.
Show answer
This question requires us to work backwards. For convenience, let's call the unknown angle C°.
$$
\begin{eqnarray}
\small\textsf{Area}\normalsize &=& \small\frac{1}{2}\normalsize\small \ \normalsize ab\ sin\ C\\[6pt]
50 &=& \small\frac{1}{2}\normalsize \times 12\times 10\ sin\ C\\[6pt]
100 &=& 120\small \ \normalsize sin\ C \\[6pt]
sin\ C&=& \small\frac{100}{120}\normalsize \\[6pt]
C&=& sin^{-1}\ \small\ \frac{100}{120}\normalsize \\[6pt]
&\approx& 56.4^\circ\
\end{eqnarray}
$$
Recommended revision guides
How to Pass National 5 Maths
BrightRED N5 Maths Study Guide
Example 6 (calculator)
A triangle of area 50 cm2 has two sides with lengths 12 cm and 10 cm. The angle between these two sides is obtuse . Calculate this angle.
Show answer
This is almost the same as the previous example, except now the angle is obtuse, not acute.
The working is exactly the same, all the way down to \(C \approx 56.4^\circ\), which cannot be correct as \(C\) is obtuse.
However, the final step is simple if your knowledge of trig equations is solid. \(C\) is the 2nd quadrant (obtuse) angle related to \(56.4^\circ\), so it's \(180-56.4^\circ=123.6^\circ\).
Example 7 (calculator)
SQA National 5 Maths 2015 P2 Q11
The top of a table is in the shape of a regular hexagon. The three diagonals of the hexagon which are shown as dotted lines in the diagram below each have length 40 centimetres.
Calculate the area of the top of the table.
Show answer
A hexagon comprises six equilateral triangles, which contain 60° angles.
Each diagonal of the hexagon is 40 cm so each side of the triangles is 20 cm.
Now we can find the area of each triangle:
$$
\begin{eqnarray}
\small\textsf{Area}\normalsize &=& \small\frac{1}{2}\normalsize\small \ \normalsize ab\ sin\ C\\[6pt]
&=& \small\frac{1}{2}\normalsize \times 20\times 20\ sin\ 60^\circ\\[6pt]
&\approx& 173.205...
\end{eqnarray}
$$
So the area of the hexagon is \(6\times 173.205... \approx\ 1039.2\) cm2
Example 8 (non-calculator)
SQA National 5 Maths 2017 P1 Q7
In triangle DEF:
• DE = 8 centimetres
• EF = 12 centimetres
• sin E \(=\frac{2}{3}\)
Calculate the area of triangle DEF.
Show answer
The sides DE and EF enclose the angle E°, so we can find the area as follows:
$$
\begin{eqnarray}
\small\textsf{Area}\normalsize &=& \small\frac{1}{2}\normalsize\times\small \ \normalsize \small\textsf{DE}\normalsize\times\small\textsf{EF}\normalsize\times sin\,E\\[6pt]
&=& \small\frac{1}{2}\normalsize \times 8\times 12\times\small\frac{2}{3}\\[6pt]
&=& \left(\small\frac{1}{2}\normalsize\times\small\frac{2}{3}\right) \times \left(8\times 12\right)\\[6pt]
&=& \small\frac{1}{3}\normalsize \times 96\\[6pt]
&=& 32\ \small\textsf{cm²}
\end{eqnarray}
$$
N5 Maths practice papers
Non-calculator papers and solutions
Calculator papers and solutions
Example 9 (calculator)
SQA National 5 Maths 2019 P2 Q3
The diagram shows triangle PQR.
• PR = 45 centimetres
• PQ = 70 centimetres
• Angle QPR = 129°
Calculate the area of triangle PQR.
Show answer
This is a straightfoward 2-mark use of the area formula.
$$
\begin{eqnarray}
\small\textsf{Area}\normalsize &=& \small\frac{1}{2}\normalsize\small \ \normalsize ab\ sin\ C\\[6pt]
&=& \small\frac{1}{2}\normalsize \times 45\times 70\ sin\ 129^\circ\\[6pt]
&=& 1224.0048...\\[6pt]
&\approx& 1224.0\ \small\textsf{cm²}
\end{eqnarray}
$$
Example 10 (calculator)
SQA National 5 Maths 2023 P2 Q15
In the diagram:
• AC is perpendicular to BC
• AB = 18 centimetres
• BD = 6 centimetres
• BC = 8 centimetres.
The area of triangle ADE is 160 square centimetres.
Calculate the length of AE.
Show answer
This 4-mark question first needs SOH CAH TOA in triangle ABC to find the sine of the angle at A.
$$
\begin{eqnarray}
sin\,A &=& \small\frac{8}{18}\normalsize\\[6pt]
&=& \small\frac{4}{9}\normalsize
\end{eqnarray}
$$
Note that we don't need to find angle A itself, because the area formula uses sin A°, not A°.
Now we use the area formula for triangle ADE, as follows:
$$
\begin{eqnarray}
\small\textsf{Area}\normalsize &=& \small\frac{1}{2}\normalsize\times\small\textsf{AD}\normalsize\times\small\textsf{AE}\normalsize\times sin\,A\\[8pt]
160&=& \small\frac{1}{2}\normalsize \times 24\times \small\textsf{AE}\normalsize\times\small\frac{4}{9}\\[8pt]
160&=& \small\frac{2}{9}\normalsize \times 24\times \small\textsf{AE}\normalsize\\[8pt]
160\times 9&=& 2 \times 24\times \small\textsf{AE}\normalsize\\[8pt]
1440 &=& 48\times\small\textsf{AE}\normalsize\\[8pt]
\small\textsf{AE}\normalsize &=& \small\frac{1440}{48}\normalsize\\[8pt]
&=& 30\ \small\textsf{cm}
\end{eqnarray}
$$
Need a Nat 5 Maths tutor? Just use this handy little widget and our partner Bark.com will help you find one.
Past paper questions
Other great resources