National 5 Maths Algebraic Fractions
Course content
Reducing an algebraic fraction to its simplest form
Applying the four operations to algebraic fractions.
Textbook page references
Key ideas
Algebraic fractions follow exactly the same rules as numerical fractions .
To simplify fractions, we divide top and bottom by a common factor .
N5 Maths revision course
National5.com self-study course
Save £10 with discount code 'Maths.scot'
Example 1 (non-calculator)
Fully simplify the following expression:
\(
\large\frac{{x^2}(x\,+\,1)}{x(x\,-\,2)(x\,+\,1)}\:\:\small(x\neq0,\ x\neq2,\ x\neq-1)\normalsize
\)
Show answer
Note that the reason for \(x\) not being allowed to be 0, 2 or -1 is so that none of the factors of the denominator can possibly be zero. Division by zero is impossible.
In this example, both the numerator and denominator are already fully factorised. So we do not have to do any more factorising ourselves.
There are common factors in both the numerator and denominator of \(x\) and \(\left(x+1\right)\). These can cancel.
So we get the following working:
$$
\begin{eqnarray}
\small\frac{{x^2}(x+1)}{x(x-2)(x+1)}\ &=&\small\ \frac{{x^\cancel{2}}\cancel{(x+1)}}{\cancel{x}(x-2)\cancel{(x+1)}}\\[8pt]
&=&\small\ \frac{x}{x-2}
\end{eqnarray}
$$
Video solution by Clelland Maths
Example 2 (non-calculator)
Express this fraction in its simplest form:
\(
\large\frac{x^2\,+\,3x\,-\,4}{x^2\,-\,x}\:\:\small(x\neq0,\ x\neq1)\normalsize
\)
Show answer
In this example, we need to factorise both the numerator and denominator to see if there are any common factors that we can cancel.
$$
\begin{eqnarray}
\small\frac{x^2+3x-4}{x^2-x}\ &=&\small\ \frac{(x-1)(x+4)}{x(x-1)}\\[8pt]
&=&\small\ \frac{\cancel{(x-1)}(x+4)}{x\cancel{(x-1)}}\\[8pt]
&=&\small\ \frac{x+4}{x}
\end{eqnarray}
$$
Video solution by Clelland Maths
Example 3 (non-calculator)
Express \(\large\frac{3a}{4}\!+\!\frac{5a}{6}\) as a single fraction in its simplest form.
Show answer
Just like adding numerical fractions , we need a common denominator.
The lowest common multiple of 4 and 6 is 12.
$$
\begin{eqnarray}
\small\frac{3a}{4}+\frac{5a}{6}\ &=&\small\ \frac{9a}{12}+\frac{10a}{12}\\[8pt]
&=&\small\ \frac{19a}{12}
\end{eqnarray}
$$
Video solution by Clelland Maths
Recommended student book
Zeta Maths: National 5 Maths Textbook
Best price, direct from the publisher
Example 4 (non-calculator)
Express \(\large\frac{3}{x}\!-\!\frac{2x}{5}\small\ \left(x\neq0\right)\) as a single fraction in its simplest form.
Show answer
Just like subtracting numerical fractions , we need a common denominator.
With numerical fractions, we would use the lowest common multiple of the denominators. But in this example, we don't know the value of \(x\), so we don't know if it's a multiple of 5.
Because of this, we just have to multiply the denominators and use \(5x\) as the common denominator.
$$
\begin{eqnarray}
\small\frac{3}{x}-\frac{2x}{5}\ &=&\small\ \frac{15}{5x}-\frac{2x^2}{5x}\\[8pt]
&=&\small\ \frac{15-2x^2}{5x}
\end{eqnarray}
$$
Video solution by Clelland Maths
Example 5 (non-calculator)
Express \( (x+3) \times \large \frac{x^2\,+\,7}{x^2\,-\,9} \normalsize \) as a single fraction in its simplest form.
Show answer
Just like multiplying numerical fractions , we first try to cancel any common factors.
How do we find common factors? By factorising, of course!
$$
\begin{eqnarray}
&\ &\small (x+3) \times \frac{x^2+7}{x^2-9} \\[12pt]
&=&\small\ \frac{x+3}{1} \times \frac{x^2+7}{(x-3)(x+3)} \\[12pt]
&=&\small\ \frac{\cancel{x+3}}{1} \times \frac{x^2+7}{(x-3)(\cancel{x+3})} \\[12pt]
&=&\small\ \frac{x^2+7}{x-3}
\end{eqnarray}
$$
Video solution by Clelland Maths
Example 6 (non-calculator)
Express \( \large\frac{p}{2t^2} \normalsize \div \large \frac{p^2}{4t} \) as a single fraction in its simplest form.
Show answer
Just like dividing numerical fractions , we multiply by the reciprocal.
$$
\begin{eqnarray}
\small\frac{p}{2t^2} \div \frac{p^2}{4t}\ &=&\ \small\frac{p}{2t^2}\times \frac{4t}{p^2}\\[10pt]
&=&\small\ \frac{\cancel{p}}{\cancelto{1}{2}t^\cancel{2}}\times \frac{\cancelto{2}{4}\cancel{t}}{p^\cancel{2}}\\[10pt]
&=&\small\ \frac{2}{pt}
\end{eqnarray}
$$
Video solution by Clelland Maths
Find a Maths tutor
Do you need a National 5 Maths tutor?Click here to find a tutor in your area.
Example 7 (calculator)
SQA National 5 Maths 2014 P2 Q9
Express \(\large\frac{7}{x\,+\,5}-\frac{3}{x}\normalsize\:\:\:\:\small x\neq-\!5,\ x\neq0\:\:\) as a single fraction in its simplest form.
Show answer
$$
\begin{eqnarray}
\small\frac{7}{x+5}-\frac{3}{x}\ &=&\small\ \frac{7x}{x(x+5)}-\frac{3(x+5)}{x(x+5)}\\[10pt]
&=&\small\ \frac{7x-3(x+5)}{x(x+5)}\\[10pt]
&=&\small\ \frac{7x-3x-15}{x(x+5)}\\[10pt]
&=&\small\ \frac{4x-15}{x(x+5)}
\end{eqnarray}
$$
Video solution by Clelland Maths
Example 8 (calculator)
SQA National 5 Maths 2015 P2 Q7
Express \( \large\frac{5t}{s} \normalsize \div \large \frac{t}{2s^2} \) in its simplest form.
Show answer
$$
\begin{eqnarray}
\small\frac{5t}{s} \div \frac{t}{2s^2}\ &=&\small\ \frac{5t}{s}\times \frac{2s^2}{t}\\[10pt]
&=&\small\ \frac{5\cancel{t}}{\cancel{s}}\times \frac{2s\cancel{^2}}{\cancel{t}}\\[10pt]
&=&\ 10s
\end{eqnarray}
$$
Video solution by Clelland Maths
Example 9 (calculator)
SQA National 5 Maths 2016 P2 Q13
Express \(\large\frac{3}{x\,-\,2}+\frac{5}{x\,+\,1}\small,\:\: x\neq 2,\ x\neq-\!1\:\:\) as a single fraction in its simplest form.
Show answer
$$
\begin{eqnarray}
&\ &\small\frac{3}{x-2}+\frac{5}{x+1}\ \\[10pt]
&=&\small\ \frac{3(x+1)}{(x-2)(x+1)}+\frac{5(x-2)}{(x+1)(x-2)}\\[10pt]
&=&\small\ \frac{3(x+1)+5(x-2)}{(x+1)(x-2)}\\[10pt]
&=&\small\ \frac{3x+3+5x-10}{(x+1)(x-2)}\\[10pt]
&=&\small\ \frac{8x-7}{(x+1)(x-2)}
\end{eqnarray}
$$
Video solution by Clelland Maths
Example 10 (non-calculator)
SQA National 5 Maths 2017 Specimen P1 Q14
Express \(\large\frac{4}{x\,+\,2}-\frac{3}{x\,-\,4}\small,\:\: x\neq-\!2,\ x\neq 4\:\:\) as a single fraction in its simplest form.
Show answer
$$
\begin{eqnarray}
&\ &\small\frac{4}{x+2}-\frac{3}{x-4}\ \\[10pt]
&=&\small\ \frac{4(x-4)}{(x-4)(x+2)}-\frac{3(x+2)}{(x-4)(x+2)}\\[10pt]
&=&\small\ \frac{4(x-4)-3(x+2)}{(x-4)(x+2)}\\[10pt]
&=&\small\ \frac{4x-16-3x-6}{(x-4)(x+2)}\\[10pt]
&=&\small\ \frac{x-22}{(x-4)(x+2)}
\end{eqnarray}
$$
Video solution by Clelland Maths
Recommended revision guides
How to Pass National 5 Maths
BrightRED N5 Maths Study Guide
Example 11 (calculator)
SQA National 5 Maths 2017 Specimen P2 Q13
Simplify \(\large\frac{x^2\,-\,4x}{x^2\,+\,x\,-\,20}\small.\)
Show answer
This numerator has a common factor of \(x.\) The denominator is a trinomial. So we factorise as follows:
$$
\begin{eqnarray}
\small\frac{x^2-4x}{x^2+x-20}&=&\small\frac{x(x-4)}{(x-4)(x+5)}\\[10pt]
&=&\small\ \frac{x}{x+5}
\end{eqnarray}
$$
Example 12 (non-calculator)
SQA National 5 Maths 2017 P1 Q11
Express \(\large\frac{3}{a^2}\!-\!\frac{2}{a}\small,\:\:\small a\neq 0,\) as a single fraction in its simplest form.
Show answer
$$
\begin{eqnarray}
\small\frac{3}{a^2}-\frac{2}{a}\ &=&\small\ \frac{3}{a^2}-\frac{2a}{a^2}\\[10pt]
&=&\small\ \frac{3-2a}{a^2}
\end{eqnarray}
$$
Video solution by Clelland Maths
Example 13 (calculator)
SQA National 5 Maths 2017 P2 Q9
Factorise \(4x^2-25\small.\)
Hence simplify \(\large\frac{4x^2\,-\,25}{2x^2\,-\,x\,-\,10}\small.\)
Show answer
$$
\begin{eqnarray}
4x^2-25 &=&(2x)^2-5^2\\[10pt]
&=& (2x-5)(2x+5)
\end{eqnarray}
$$
$$
\begin{eqnarray}
\small\frac{4x^2-25}{2x^2-x-10} &=&\small\ \frac{(2x-5)(2x+5)}{(x+2)(2x-5)}\\[10pt]
&=&\small\ \frac{2x+5}{x+2}
\end{eqnarray}
$$
Video solution by Clelland Maths
N5 Maths practice papers
Non-calculator papers and solutions
Calculator papers and solutions
Example 14 (calculator)
SQA National 5 Maths 2018 P2 Q15
Express \( \large\frac{n}{n^2\,-\,4} \normalsize \div \large \frac{3}{n\,-\,2}\small,\:n\neq-\!2,\ n\neq 2\small,\) as a single fraction in its simplest form.
Show answer
$$
\begin{eqnarray}
&\ &\small\frac{n}{n^2-4} \div \frac{3}{n-2}\\[10pt]
&=&\small\ \frac{n}{(n-2)(n+2)}\times \frac{n-2}{3}\\[10pt]
&=&\small\ \frac{n}{\cancel{(n-2)}(n+2)}\times \frac{\cancel{n-2}}{3}\\[10pt]
&=&\small\ \frac{n}{3(n+2)}
\end{eqnarray}
$$
Video solution by Clelland Maths
Example 15
SQA National 5 Maths 2019 P2 Q15
Express \(\large\frac{4}{x\,-\,2}-\frac{3}{x\,+\,5}\small,\:\small x\neq 2,\ x\neq-5\:\) as a single fraction in its simplest form.
Show answer
$$
\begin{eqnarray}
&\ &\small\frac{4}{x-2}-\frac{3}{x+5}\ \\[10pt]
&=&\small\ \frac{4(x+5)}{(x-2)(x+5)}-\frac{3(x-2)}{(x+5)(x-2)}\\[10pt]
&=&\small\ \frac{4(x+5)-3(x-2)}{(x-2)(x+5)}\\[10pt]
&=&\small\ \frac{4x+20-3x+6}{(x-2)(x+5)}\\[10pt]
&=&\small\ \frac{x+26}{(x-2)(x+5)}
\end{eqnarray}
$$
Video solution by Clelland Maths
Example 16
SQA National 5 Maths 2022 P2 Q12
Simplify \(\large\frac{2ab\,+\,6a}{b^2\,-\,9}\)
Show answer
We need to remove a common factor on the top and factorise a difference of two squares on the bottom.
$$
\begin{eqnarray}
\small\frac{2ab+6a}{b^2-9}\ &=&\small\ \frac{2a(b+3)}{(b-3)(b+3)}\\[10pt]
&=&\small\ \frac{2a}{b-3}
\end{eqnarray}
$$
Video solution by Clelland Maths
Example 17
SQA National 5 Maths 2023 P2 Q10
Express \(\large\frac{7}{x\,-\,3}-\frac{2}{x}\normalsize\:\:\:\:\small x\neq3,\ x\neq0\:\:\) as a single fraction in its simplest form.
Show answer
$$
\begin{eqnarray}
\small\frac{7}{x-3}-\frac{2}{x}\ &=&\small\ \frac{7x}{x(x-3)}-\frac{2(x-3)}{x(x-3)}\\[10pt]
&=&\small\ \frac{7x-2(x-3)}{x(x-3)}\\[10pt]
&=&\small\ \frac{7x-2x+6}{x(x-3)}\\[10pt]
&=&\small\ \frac{5x+6}{x(x-3)}
\end{eqnarray}
$$
Video solution by Clelland Maths
Example 18
SQA National 5 Maths 2023 P2 Q12
Simplify \(\large\frac{x^2\,-\,16}{x^2\,+\,x\,-\,20}\small.\)
Show answer
This numerator is a difference of two squares. The denominator is a trinomial. So we factorise as follows:
$$
\begin{eqnarray}
\small\frac{x^2-16}{x^2+x-20}&=&\small\frac{(x+4)(x-4)}{(x-4)(x+5)}\\[10pt]
&=&\small\ \frac{x+4}{x+5}
\end{eqnarray}
$$
Video solution by Clelland Maths
Example 19 (calculator)
SQA National 5 Maths 2024 P2 Q6
(a) Factorise \(y^2-6y\small.\)
(b) Hence simplify \(\large\frac{y^2\,-\,6y}{y^2\,-\,3y\,-\,18}\small.\)
Show answer
(a) This is just a simple common factor.
$$
\begin{eqnarray}
y^2-6y &=&y(y-6)\\[10pt]
\end{eqnarray}
$$
(b) Here we have the expression from (a) as the numerator and a trinomial as the denominator.
$$
\begin{eqnarray}
\small\frac{y^2-6y}{y^2-3y-18} &=&\small\ \frac{y(y-6)}{(y-6)(y+3)}\\[10pt]
&=&\small\ \frac{y}{y+3}
\end{eqnarray}
$$
Video solution by Clelland Maths
Example 20 (calculator)
SQA National 5 Maths 2024 P2 Q12
Express \(\large\frac{2}{x\,+\,5}+\frac{3}{x\,-\,4}\small,\:\: x\neq -\!5,\ x\neq 4\:\) as a single fraction in its simplest form.
Show answer
$$
\begin{eqnarray}
&\ &\small\frac{2}{x+5}+\frac{3}{x-4}\ \\[10pt]
&=&\small\ \frac{2(x-4)}{(x+5)(x-4)}+\frac{3(x+5)}{(x-4)(x+5)}\\[10pt]
&=&\small\ \frac{2(x-4)+3(x+5)}{(x+5)(x-4)}\\[10pt]
&=&\small\ \frac{2x-8+3x+15}{(x+5)(x-4)}\\[10pt]
&=&\small\ \frac{5x+7}{(x+5)(x-4)}
\end{eqnarray}
$$
Video solution by Clelland Maths
Need a Nat 5 Maths tutor?
Just use this handy little widget and our partner Bark.com will help you find one.
Maths.scot worksheet
Past paper questions
Other great resources
×
Click here to study the algebraic fractions notes on National5.com.
You may also want to check out their Nat 5 Maths self-study course . We think it's excellent. If you decide to enrol, just use coupon code "Maths.scot " to get £10 discount.