Advanced Higher Maths
Vectors

 Our generous sponsors 

Course content

  • Higher vectors work is assumed
  • Vector product \(\boldsymbol{\underline{a}}\!\small\times\normalsize\!\boldsymbol{\underline{b}}\)
  • Scalar triple product \(\boldsymbol{\underline{a}}.\!(\boldsymbol{\underline{b}}\!\small\times\normalsize\!\boldsymbol{\underline{c}})\)
  • Equation of a line: parametric, symmetric and vector forms
  • Point of intersection and angle between two lines (in 3D)
  • Equation of a plane: vector, parametric and Cartesian forms
  • Point of intersection and angle between a plane and a line
  • Intersection of two or three planes
  • Angle between two planes.

Textbook page references

Find a Maths tutor

Need a tutor for Advanced Higher Maths?
Click here to find a tutor in your area. 

×

Vector product

These methods of obtaining a cross product are included on the Advanced Higher Maths formulae list:

$$ \begin{eqnarray} \boldsymbol{\underline{a}} \small\times\normalsize \boldsymbol{\underline{b}} &=& \vert \boldsymbol{\underline{a}} \vert\,\vert \boldsymbol{\underline{b}} \vert\,sin\,\theta\ \widehat{\boldsymbol{\underline{\small n\normalsize}}} \\[6pt] &=& \begin{vmatrix} \boldsymbol{\underline{i}} & \boldsymbol{\underline{j}} & \boldsymbol{\underline{k}}\cr a_1 & a_2 & a_3\cr b_1 & b_2 & b_3 \end{vmatrix} \\[6pt] &=& \boldsymbol{\underline{i}} \begin{vmatrix} a_{\small 2\normalsize}\!\! & a_{\small 3\normalsize}\cr b_{\small 2\normalsize}\!\! & b_{\small 3\normalsize} \end{vmatrix} -\boldsymbol{\underline{j}} \begin{vmatrix} a_{\small 1\normalsize}\!\! & a_{\small 3\normalsize}\cr b_{\small 1\normalsize}\!\! & b_{\small 3\normalsize} \end{vmatrix} +\boldsymbol{\underline{k}} \begin{vmatrix} a_{\small 1\normalsize}\!\! & a_{\small 2\normalsize}\cr b_{\small 1\normalsize}\!\! & b_{\small 2\normalsize} \end{vmatrix} \end{eqnarray} $$

Example 1 (non-calculator)

Find the area of the parallelogram bounded by the vectors:
\(\boldsymbol{\underline{a}}=-\boldsymbol{\underline{i}}+3\boldsymbol{\underline{j}}+2\boldsymbol{\underline{k}}\)
\(\boldsymbol{\underline{b}}=2\boldsymbol{\underline{i}}-2\boldsymbol{\underline{j}}+\boldsymbol{\underline{k}}\)

Example 2 (non-calculator)

Find the volume of the parallelepiped bounded by the three vectors:
\(\boldsymbol{\underline{a}}=\boldsymbol{\underline{i}}+4\boldsymbol{\underline{j}}-2\boldsymbol{\underline{k}}\)
\(\boldsymbol{\underline{b}}=3\boldsymbol{\underline{i}}+\boldsymbol{\underline{k}}\)
\(\boldsymbol{\underline{c}}=-2\boldsymbol{\underline{i}}+\boldsymbol{\underline{j}}+5\boldsymbol{\underline{k}}\)

Example 3 (calculator)

Find the angle between the two planes:
\(x+2y-z=4\)
\(2x-y-z=5\)

Recommended textbook

Zeta Maths: Advanced Higher Maths 
 Best price, direct from the publisher

Example 4 (non-calculator)

A straight line passes through the points A\((4,-1,2)\) and B\((-2,3,7)\small.\) Obtain its symmetric equations.

Example 5 (non-calculator)

A plane contains the points P\((4,1,-5)\small,\) Q\((-1,-2,1)\) and R\((3,0,-1)\small.\) Find its Cartesian equation.

Example 6 (non-calculator)

Determine the parametric equation of the line of intersection of the two planes:

$$ \begin{eqnarray} \pi_{1}&:&\: 2x-y+z=4 \\[6pt] \pi_{2}&:&\: 4x+2y-z=0 \\[6pt] \end{eqnarray} $$

Revision guides

How To Pass Advanced Higher Maths 
BrightRED AH Maths Study Guide 

Example 7 (non-calculator)

The symmetric equation of a line \(l\) is
$$ \small\frac{x-3}{4}\normalsize = \small\frac{y-2}{-1}\normalsize = \small\frac{z+1}{2}\normalsize \\[6pt] $$

Plane \(\pi\) is defined by the equation \(2x+y-z=4\small.\)
Find the coordinates of the point of intersection of line \(l\) and plane \(\pi\small.\)

Example 8 (calculator)

SQA Advanced Higher Maths 2014 Q5

Three vectors \(\small\overrightarrow{\textsf{OA}}\small,\) \(\small\overrightarrow{\textsf{OB}}\) and \(\small\overrightarrow{\textsf{OC}}\) are given by \(\boldsymbol{\underline{u}}\small,\) \(\boldsymbol{\underline{v}}\) and \(\boldsymbol{\underline{w}}\) where \(\boldsymbol{\underline{u}}=5\boldsymbol{\underline{i}}+13\boldsymbol{\underline{j}}\small,\) \(\boldsymbol{\underline{v}}=2\boldsymbol{\underline{i}}+\boldsymbol{\underline{j}}+3\boldsymbol{\underline{k}}\small,\) \(\boldsymbol{\underline{w}}=\boldsymbol{\underline{i}}+4\boldsymbol{\underline{j}}-\boldsymbol{\underline{k}}\small.\)
Calculate \(\boldsymbol{\underline{u}}.\!(\boldsymbol{\underline{v}}\!\small\times\normalsize\!\boldsymbol{\underline{w}})\small.\)
Interpret your result geometrically.

Example 9 (calculator)

SQA Advanced Higher Maths 2016 Q14

Two lines \(L_1\) and \(L_2\) are given by the equations:

$$ \begin{eqnarray} L_{1}&:&\: x=4+3\lambda\small,\normalsize\:\:y=2+4\lambda\small,\normalsize\:\:z=-7\lambda \\[6pt] L_{2}&:&\: \small\frac{x-3}{-2}\normalsize = \small\frac{y-8}{1}\normalsize = \small\frac{z+1}{3}\normalsize \\[6pt] \end{eqnarray} $$

(a)  Show that the lines \(L_1\) and \(L_2\) intersect and find the point of intersection.
(b)  Calculate the obtuse angle between the lines \(L_1\) and \(L_2\small.\)

Scientific calculators

Casio FX-85GTCW scientific calculator 
Casio FX-991CW advanced calculator 

Example 10 (calculator)

SQA Advanced Higher Maths 2018 Q16

Planes \(\pi_1\small,\) \(\pi_2\) and \(\pi_3\) have equations

$$ \begin{eqnarray} \pi_{1}&:&\: x-2y+z=-4 \\[6pt] \pi_{2}&:&\: 3x-5y-2z=1 \\[6pt] \pi_{3}&:&\: -\!7x+11y+az=-11 \\[6pt] \end{eqnarray} $$

where \(a\in\mathbb R\small.\)

(a)  Use Gaussian elimination to find the value of \(\raise 0.2pt{a}\) such that the intersection of the planes \(\pi_1\small,\) \(\pi_2\) and \(\pi_3\) is a line.

(b)  Find the equation of the line of intersection of the planes when \(\raise 0.2pt{a}\) takes this value.

The plane \(\pi_4\) has equation \(-9x+15y+6z=20\small.\)

(c)  Find the acute angle between \(\pi_1\) and \(\pi_4\small.\)

(d)  Describe the geometrical relationship between \(\pi_2\) and \(\pi_4\small.\) Justify your answer.

Example 11 (calculator)

SQA Advanced Higher Maths 2019 Q15

The equations of two planes are given below.

$$ \begin{eqnarray} \pi_{1}&:&\: 2x-3y-z=9 \\[6pt] \pi_{2}&:&\: x+y-3z=2 \\[6pt] \end{eqnarray} $$

(a)  Verify that the line of intersection, \(L_1\small,\) of these two planes has parametric equations
$$ \begin{eqnarray} x &=& 2\lambda+3 \\[6pt] y &=& \lambda-1 \\[6pt] z &=& \lambda \\[6pt] \end{eqnarray} $$

(b)  Let \(\pi_3\) be the plane with equation \(-2x+4y+3z=4\small.\) Calculate the acute angle between the line \(L_1\) and the plane \(\pi_3\small.\)

(c)  \(L_2\) is the line perpendicular to \(\pi_3\) passing through P\((1,3,-2)\small.\) Determine whether or not \(L_1\) and \(L_2\) intersect.

Need an Advanced Higher Maths tutor?

Just use this handy little widget and our partner Bark.com will help you find one.

Past paper questions

Equations of lines or planes:
2016 Exemplar Paper Q16
2017 Paper Q15 (solution)
2019 Specimen Paper 2 Q13
Intersection of lines:
2016 Specimen Paper Q14
2016 Exemplar Paper Q16
2016 Paper Q14 (solution)
2019 Paper Q15 (solution)
Intersection of line and plane:
2016 Specimen Paper Q14
2017 Paper Q15 (solution)
2019 Paper Q15 (solution)
Intersection of planes:
2018 Paper Q16 (solution)

Other great resources

Notes - Auchmuty High School
Notes - St Machar Academy
Notes and exercises
- St Andrew's Academy
Notes - Hyndland Secondary School
1. Equation of a line
2. Equation of a plane
Lesson notes - Maths 777
1. Vector product, scalar triple product
2. Equations of planes
3. Equations of lines
4. Intersections of lines and planes
Videos - Mr Thomas Maths
Videos - St Andrew's Academy
Notes and examples - Maths Mutt
Worksheet - Dunblane High School

⇦ AH topic list  ⇧ Top of this page