Advanced Higher Maths
Complex Numbers

 Our generous sponsors 

Course content

  • Arithmetic: \(\raise 1pt{\small+}\), \(\raise 1pt{\small-}\), \(\raise 1pt{\small\times}\), \(\raise 1pt{\small\div}\), \(\raise 2pt{\small\sqrt{\ }}\normalsize\)
  • Cubic and quartic equations (real coefficients, one complex root given)
  • Solving equations involving complex numbers
  • Plotting complex numbers in the complex plane (Argand diagram)
  • Modulus \(\raise 0.2pt{\vert z\vert}\) and argument \(\raise 0.2pt{arg(z)}\)
  • Converting Cartesian\(\small\,\normalsize\raise 1pt{\small\leftrightarrow\normalsize}\small\,\normalsize\)polar form
  • Applying de Moivre's theorem (with integer and fractional indices) to multiple angle trig formulae or to find the nth roots of a complex number
  • Sketching the locus of points satisfying an equation or inequality.

Textbook page references

Find a Maths tutor

Need a tutor for Advanced Higher Maths?
Click here to find a tutor in your area. 

×

Example 1 (non-calculator)

Given that \(z=2-\sqrt{3}\tiny\,\normalsize i\small,\) write down the conjugate \(\raise 0.1pt{\overline{z}}\) and find \(\raise 0.1pt{z\overline{z}}\small.\)

Example 2 (non-calculator)

Given that \(z_1=3+4i\) and \(z_2=k-12i\small,\) \(\raise 0.1pt{k\in\mathbb R}\small,\) find \(\raise 0.1pt{z_{1}\overline{z_2}}\) and the value of \(\raise 0.1pt{k}\) such that \(z_{1}\overline{z_2}\in\mathbb R\small.\)

Example 3 (non-calculator)

For \(\raise 0.1pt{n\in\mathbb R}\small,\) given that \(\raise 0.1pt{z=\large\frac{3\,-\,i}{2\,+\,ni}\normalsize\in\mathbb R}\small,\) find \(\raise 0.1pt{n}\) and the value of \(\raise 0.1pt{z}\small.\)

Example 4 (non-calculator)

Solve the equation \(x^2-4x+5=0\) for \(\raise 0.1pt{x\in\mathbb C}\small.\)

Recommended student books

Leckie: Advanced Higher Maths book 
Hodder: 'How to Pass' revision book 

Example 5 (non-calculator)

Solve the equation \(z+2i\,\overline{z}=8+7i\small.\)

Example 6 (non-calculator)

Find \(\sqrt{3-4i\small\,}\small.\)

Example 7 (non-calculator)

The complex number \(z=1+2i\,\) is a root of the equation \(z^3-5z^2+11z-15=0\small.\) Find the remaining roots.

Scientific calculators

Casio FX-85GTCW scientific calculator 
Casio FX-991CW advanced calculator 

Example 8 (non-calculator)

The complex number \(z=1-\sqrt{3}\tiny\,\normalsize i\,\) is a root of the polynomial equation \(z^4+3z^2+2z+12=0\small.\) Find the remaining roots.

Example 9 (non-calculator)

The complex number \(\raise 0.1pt{z}\) has been plotted on an Argand diagram, as shown below.
Express \(\raise 0.1pt{z}\) in:
(a)  Cartesian form
(b)  polar form.

Example 10 (non-calculator)

Two complex numbers are defined as:
\(z=2\left(cos\,\large\frac{\pi}{4}\normalsize+i\,sin\,\large\frac{\pi}{4}\normalsize\right)\)
\(w=3\left(cos\,\large\frac{5\pi}{6}\normalsize+i\,sin\,\large\frac{5\pi}{6}\normalsize\right)\)
Express in polar form: (a) \(\raise 0.1pt{zw}\)  (b) \(\large\frac{z}{w}\small.\)

Stationery supplies

Pukka Pad: A4 squared notepads 
Uni-ball Eye: fine-tip rollerball pens 

Example 11 (non-calculator)

Given \(\raise 0.1pt{z=\!\!-\!1\!-\!i}\small,\) write \(\raise 0.2pt{z^{10}}\) in polar form.

Example 12 (non-calculator)

Express each of the fourth roots of \(-\!1\!+\!i\) in polar form.

Example 13 (non-calculator)

SQA Advanced Higher Maths 2022 Paper 1 Q3

Given that \(z_1=5+3i\) and \(z_2=6+2i\small,\) express \(\raise 0.1pt{z_{1}\overline{z_2}}\) in the form \(a+bi\) where \(a\) and \(b\) are real numbers.

Example 14 (non-calculator)

SQA Advanced Higher Maths 2023 Paper 1 Q6

(a)  Express \(z=1+\sqrt{3}\,i\) in polar form.
(b)  Hence, or otherwise, show that \(z^3\) is real.

Need an Advanced Higher Maths tutor?

Just use this handy little widget and our partner Bark.com will help you find one.

Past paper questions

Basic operations:
2016 Exemplar Paper Q5
2018 Paper Q4 (solution)
Solving cubic or quartic equations:
2017 Paper Q17 (solution)
2019 Specimen Paper 1 Q5
Argand diagram:
2019 Paper Q18 (solution)
2019 Specimen Paper 2 Q7
Locus in the complex plane:
2018 Paper Q10 (solution)
de Moivre's theorem:
2016 Specimen Paper Q17
2019 Paper Q18 (solution)
2019 Specimen Paper 2 Q7
2023 Paper 1 Q6

Other great resources

Notes - Auchmuty High School
Notes - St Columba's High School
Notes - St Machar Academy
Notes and exercises
- St Andrew's Academy
Notes - Hyndland Secondary School
Lesson notes - Maths 777
1. Complex number arithmetic
2. Complex equations
3. Complex polynomials
Videos - Mr Thomas Maths
Videos - St Andrew's Academy
Notes and examples - Maths Mutt
Worksheet - Armadale Academy
Worksheet - Dunblane High School

⇦ AH topic list  ⇧ Top of this page