Advanced Higher Maths Complex Numbers
Course content
Arithmetic: \(\raise 1pt{\small+}\), \(\raise 1pt{\small-}\), \(\raise 1pt{\small\times}\), \(\raise 1pt{\small\div}\), \(\raise 2pt{\small\sqrt{\ }}\normalsize\)
Cubic and quartic equations (real coefficients, one complex root given)
Solving equations involving complex numbers
Plotting complex numbers in the complex plane (Argand diagram)
Modulus \(\raise 0.2pt{\vert z\vert}\) and argument \(\raise 0.2pt{arg(z)}\)
Converting Cartesian\(\small\,\normalsize\raise 1pt{\small\leftrightarrow\normalsize}\small\,\normalsize\)polar form
Applying de Moivre's theorem (with integer and fractional indices) to multiple angle trig formulae or to find the nth roots of a complex number
Sketching the locus of points satisfying an equation or inequality.
Textbook page references
Find a Maths tutor
Need a tutor for Advanced Higher Maths?Click here to find a tutor in your area.
Example 1 (non-calculator)
Given that \(z=2-\sqrt{3}\tiny\,\normalsize i\small,\) write down the conjugate \(\raise 0.1pt{\overline{z}}\) and find \(\raise 0.1pt{z\overline{z}}\small.\)
Show answer
The complex conjugate \(\overline{z}=2+\sqrt{3}\tiny\,\normalsize i\small.\)
$$
\begin{eqnarray}
z\overline{z} &=& (2-\sqrt{3}\tiny\,\normalsize i)(2+\sqrt{3}\tiny\,\normalsize i)\\[6pt]
&=& 2^2-3\tiny\,\normalsize i^2 \\[6pt]
&=& 4+3 \\[6pt]
&=& 7
\end{eqnarray}
$$
Example 2 (non-calculator)
Given that \(z_1=3+4i\) and \(z_2=k-12i\small,\) \(\raise 0.1pt{k\in\mathbb R}\small,\) find \(\raise 0.1pt{z_{1}\overline{z_2}}\) and the value of \(\raise 0.1pt{k}\) such that \(z_{1}\overline{z_2}\in\mathbb R\small.\)
Show answer
The complex conjugate \(\overline{z_2}=k+12i\small.\)
$$
\begin{eqnarray}
z_{1}\overline{z_2} &=& (3+4i)(k+12i)\\[6pt]
&=& 3k+36i+4ki+48i^2 \\[6pt]
&=& (3k-48)+(4k+36)i
\end{eqnarray}
$$
\(z_{1}\overline{z_2}\in\mathbb R\) when its imaginary part equals zero.
$$
\begin{gather}
4k+36=0\\[6pt]
k=-9
\end{gather}
$$
Example 3 (non-calculator)
For \(\raise 0.1pt{n\in\mathbb R}\small,\) given that \(\raise 0.1pt{z=\large\frac{3\,-\,i}{2\,+\,ni}\normalsize\in\mathbb R}\small,\) find \(\raise 0.1pt{n}\) and the value of \(\raise 0.1pt{z}\small.\)
Show answer
To divide complex numbers we multiply top and bottom by the conjugate of the denominator.
$$
\begin{eqnarray}
z=\small\frac{3-i}{2+ni}\normalsize &=& \small\frac{3-i}{2+ni}\normalsize\times\small\frac{2-ni}{2-ni}\normalsize\\[9pt]
&=& \small\frac{(3-i)(2-ni)}{(2+ni)(2-ni)} \\[9pt]
&=& \small\frac{(6-2i-3ni-n)}{(2^2+n^2)} \\[9pt]
&=& \small\frac{6-n}{4+n^2}\normalsize + \small\frac{-2-3n}{4+n^2}\normalsize i
\end{eqnarray}
$$
\(z\in\mathbb R\) so \(\small\textsf{Im}\normalsize(z)=0\) and we solve for \(n\small.\)
$$
\begin{gather}
-2-3n=0\\[6pt]
-3n=2\\[6pt]
n=-\small\frac{2}{3}
\end{gather}
$$
Now we can subtitute into \(\small\textsf{Re}\normalsize(z)\small.\)
$$
\begin{eqnarray}
z &=& \small\frac{6-n}{4+n^2}\\[6pt]
&=& \small\frac{6+\frac{2}{3}}{4+\left(\frac{2}{3}\right)^2} \\[8pt]
&=& \small\frac{\frac{20}{3}}{4\frac{4}{9}} \\[8pt]
&=& \small\frac{\frac{60}{9}}{\frac{40}{9}} \\[8pt]
&=& \small\frac{60}{40} \\[8pt]
&=& \small\frac{3}{2}
\end{eqnarray}
$$
Example 4 (non-calculator)
Solve the equation \(x^2-4x+5=0\) for \(\raise 0.1pt{x\in\mathbb C}\small.\)
Show answer
We use the quadratic formula with \(a=1\), \(b=-4\) and \(c=5\).
$$
\begin{eqnarray}
x &=& \frac{-b\pm\sqrt{b^2-4ac}}{2a}\\[10pt]
&=& \frac{4\pm\sqrt{(-4)^2-4(1)(5)}}{2}\\[10pt]
&=& \frac{4\pm\sqrt{16-20}}{2}\\[10pt]
&=& \frac{4\pm\sqrt{-4}}{2}\\[10pt]
&=& \frac{4\pm\sqrt{4}\sqrt{-1}}{2}\\[10pt]
&=& \frac{4\pm 2i}{2}\\[10pt]
&=& 2\pm i
\end{eqnarray}
$$
Recommended student books
Leckie: Advanced Higher Maths book
Hodder: 'How to Pass' revision book
Example 5 (non-calculator)
Solve the equation \(z+2i\,\overline{z}=8+7i\small.\)
Show answer
We start by letting \(z=x+yi\small,\) say.
So the complex conjugate \(\overline{z}=x-yi\small.\)
The equation then becomes:
$$
\begin{gather}
(x+yi) +2i(x-yi) = 8+7i\\[6pt]
x+yi+2xi-2yi^2 = 8+7i\\[6pt]
x+yi+2xi+2y = 8+7i\\[6pt]
(x+2y)+(yi+2xi) = 8+7i\\[6pt]
(x+2y)+(y+2x)i = 8+7i
\end{gather}
$$
Equating the real parts, we obtain this equation:
$$x+2y=8$$
Equating the imaginary parts, we obtain a second equation:
$$y+2x=7$$
All that remains is then to solve these two equations simultaneously to find \(x\) and \(y\small.\)
One way of doing this is to rearrange the second equation to \(y=7-2x\) and substitute into the first equation:
$$
\begin{gather}
x+2(7-2x) = 8\\[6pt]
x+14-4x = 8\\[6pt]
-3x = 8-14\\[6pt]
-3x = -6\\[6pt]
x = 2
\end{gather}
$$
So \(y=7-2(2)=3\) which gives us \(z = 2+3i\small.\)
Example 6 (non-calculator)
Find \(\sqrt{3-4i\small\,}\small.\)
Show answer
It is important to remember that there are two square roots of any complex number.
Let \(\sqrt{3-4i\small\,\normalsize}=a+bi\small.\) So:
$$
\begin{eqnarray}
3-4i &=& (a+bi)^2\\[6pt]
3-4i &=& a^2+2abi-b^2\\[6pt]
3-4i &=& (a^2-b^2)+2abi
\end{eqnarray}
$$
First we equate the imaginary part of this equation:
$$
\begin{eqnarray}
-4 &=& 2ab\\[6pt]
b &=& -\small\frac{2}{a}\normalsize
\end{eqnarray}
$$
Now we substitute this into the real part of the equation:
$$
\begin{gather}
3 = a^2-b^2\\[6pt]
3 = a^2-\small\left(\normalsize-\small\frac{2}{a}\right)^2\normalsize\\[6pt]
3 = a^2-\small\frac{4}{a^2}\normalsize\\[6pt]
3a^2 = a^4-4\\[6pt]
a^4-3a^2-4 = 0\\[6pt]
(a^2+1)(a^2-4) = 0\\[6pt]
a^2+1=0\:\:\small\textsf{or}\normalsize\:\:a^2-4=0\\[6pt]
\end{gather}
$$
$$
\begin{eqnarray}
a^2=-1\:\:\:\:&\small\textsf{or}\normalsize&\:\:a^2=4\\[6pt]
\small\textsf{No solutions as }a\in\mathbb R\normalsize\:\:\:\:&\small\textsf{or}\normalsize&\:\:a=\pm 2\\[6pt]
\end{eqnarray}
$$
When \(a\!=\!\!-\!2\small,\) \(b\!=\!-\!\large\frac{2}{-2}\normalsize\!=\!1\) so one value of \(\sqrt{3-4i\small\,\normalsize\,}\) is \(-2+i\small.\)
When \(a\!=\!2\small,\) \(b\!=\!-\!\large\frac{2}{2}\normalsize\!=\!-\!1\) so the other value of \(\sqrt{3-4i\small\,\normalsize\,}\) is \(2-i\small.\)
Example 7 (non-calculator)
The complex number \(z=1+2i\,\) is a root of the equation \(z^3-5z^2+11z-15=0\small.\) Find the remaining roots.
Show answer
If \(\raise 0.1pt{z}\) is a root, \(\raise 0.1pt{\overline{z}}\) is another root. Complex roots always exist in conjugate pairs.
So \(\raise 0.1pt{\overline{z}=1-2i}\) is another root.
Therefore \(\raise 0.1pt{z\!-\!(1\!+\!2i)}\) and \(\raise 0.1pt{z\!-\!(1\!-\!2i)}\) are factors of \(z^3-5z^2+11z-15\small.\)
Now we multiply these two linear factors to obtain a quadratic factor. This is made much easier if we use the regrouping method below:
$$
\begin{eqnarray}
&& \left(z\!-\!(1\!+\!2i)\right)\left(z\!-\!(1\!-\!2i)\right)\\[6pt]
&=& (z-1-2i)(z-1+2i)\\[6pt]
&=& ((z-1)-2i)((z-1)+2i)\\[6pt]
&=& (z-1)^2 -4i^2 \\[6pt]
&=& z^2-2z+1+4 \\[6pt]
&=& z^2-2z+5 \\[6pt]
\end{eqnarray}
$$
Now we use polynomial long division to find the third factor.
\(z\)
\(-3\)
\(z^2\)
\(-2z\)
\(+5\)
\(z^3\)
\(-5z^2\)
\(+11z\)
\(-15\)
\(z^3\)
\(-2z^2\)
\(+5z\)
\(\downarrow\)
\(-3z^2\)
\(+6z\)
\(-15\)
\(-3z^2\)
\(+6z\)
\(-15\)
\(0\)
So the final factor is \(z-3\) and now we can list all three roots:
\(z=1+2i\small,\) \(z=1-2i\small,\) \(z=3\small.\)
Scientific calculators
Casio FX-85GTCW scientific calculator
Casio FX-991CW advanced calculator
Example 8 (non-calculator)
The complex number \(z=1-\sqrt{3}\tiny\,\normalsize i\,\) is a root of the polynomial equation \(z^4+3z^2+2z+12=0\small.\) Find the remaining roots.
Show answer
The complex conjugate \(\raise 0.1pt{\overline{z}=1+\sqrt{3}\tiny\,\normalsize i}\,\) is another root.
Therefore \(\raise 0.1pt{z\!-\!(1\!-\!\sqrt{3}\tiny\,\normalsize i)}\) and \(\raise 0.1pt{z\!-\!(1\!+\!\sqrt{3}\tiny\,\normalsize i)}\) are factors of \(z^4+3z^2+2z+12\small.\)
Now we multiply these two linear factors to obtain a quadratic factor:
$$
\begin{eqnarray}
&& \small\left(\normalsize z\!-\!(1\!-\!\sqrt{3}\tiny\,\normalsize i)\small\right)\left(\normalsize z\!-\!(1\!+\!\sqrt{3}\tiny\,\normalsize i)\small\right)\normalsize\\[6pt]
&=& \small\left(\normalsize z-1+\sqrt{3}\tiny\,\normalsize i\small\right)\left(\normalsize z-1-\sqrt{3}\tiny\,\normalsize i\small\right)\normalsize\\[6pt]
&=& \small\left(\normalsize (z-1)+\sqrt{3}\tiny\,\normalsize i\small\right)\left(\normalsize (z-1)-\sqrt{3}\tiny\,\normalsize i\small\right)\normalsize\\[6pt]
&=& (z-1)^2 -3i^2 \\[6pt]
&=& z^2-2z+1+3 \\[6pt]
&=& z^2-2z+4 \\[6pt]
\end{eqnarray}
$$
Next we use polynomial long division, taking care to leave a space for the missing \(z^3\) term.
\(z^2\)
\(+2z\)
\(+3\)
\(z^2\)
\(-2z\)
\(+4\)
\(z^4\)
\(+3z^2\)
\(+2z\)
\(+12\)
\(z^4\)
\(-2z^3\)
\(+4z\)
\(\downarrow\)
\(2z^3\)
\(-z^2\)
\(+2z\)
\(2z^3\)
\(-4z^2\)
\(+8z\)
\(\downarrow\)
\(3z^2\)
\(-6z\)
\(+12\)
\(3z^2\)
\(-6z\)
\(+12\)
\(0\)
Next, we use the quadratic formula to find the roots of \(z^2+2z+3=0\small.\)
$$
\begin{eqnarray}
z&=& \frac{-b\pm\sqrt{b^{2}-4ac}}{2a}\\[6pt]
&=& \frac{-2\pm\sqrt{2^{2}-4.1.3}}{2}\\[6pt]
&=& \frac{-2\pm\sqrt{-8}}{2}\\[6pt]
&=& \frac{-2\pm\sqrt{8}\tiny\,\normalsize i}{2}\\[6pt]
&=& \frac{-2\pm2\sqrt{2}\tiny\,\normalsize i}{2}\\[6pt]
&=& -1\pm\sqrt{2}\tiny\,\normalsize i
\end{eqnarray}
$$
So now we can list all four roots:
\(z=1\pm\sqrt{3}\tiny\,\normalsize i\)
\(z=-1\pm\sqrt{2}\tiny\,\normalsize i\)
Example 9 (non-calculator)
The complex number \(\raise 0.1pt{z}\) has been plotted on an Argand diagram, as shown below.
Express \(\raise 0.1pt{z}\) in:
(a) Cartesian form
(b) polar form.
Show answer
(a) Cartesian form: \(z=k\sqrt{3}-k\tiny\,\normalsize i\small.\) This is only worth one mark.
(b) Polar form. This would typically be worth three marks: one for the modulus \(\vert z\vert\small,\) one for the argument \(arg(z)\) and one for correctly combining them into polar form.
For the modulus, we use the distance formula (Pythagoras):
$$
\begin{eqnarray}
\vert z\vert\ &=& \sqrt{(k\sqrt{3})^2+(-k)^2}\\[6pt]
&=& \sqrt{(3k^2+k^{2})}\\[6pt]
&=& \sqrt{4k^{2}}\\[8pt]
&=& \ 2k\\[12pt]
\end{eqnarray}
$$
To find the principal argument, in the range \(-\pi\lt\theta\leq\pi\small,\) we use arctan:
$$
\begin{eqnarray}
\theta = arg(z) &=& tan^{-1}\small\left(\frac{-k}{k\sqrt{3}}\right)\normalsize \\[6pt]
&=& tan^{-1}\small\left(\frac{-1}{\sqrt{3}}\right)\normalsize \\[6pt]
&=& -\frac{\pi}{6} \\[6pt]
\end{eqnarray}
$$
So the polar form is:
$$ z=2k\left(cos\,(-\small\frac{\pi}{6}\normalsize)+i\,sin\,(-\small\frac{\pi}{6}\normalsize)\right) $$
Using our knowledge from the Functions topic that cosine is even and sine is odd, we might want to simplify this:
$$ z=2k\left(cos\,\small\frac{\pi}{6}\normalsize-i\,sin\,\small\frac{\pi}{6}\normalsize\right) $$
Note: Time permitting, it may be a wise idea in your exam to check that your polar form is correct by evaluating the cos and sin and checking that it simplifies back into the Cartesian form – but be careful to score out your check, in case the marker isn't sure that you knew where to stop!
Example 10 (non-calculator)
Two complex numbers are defined as:
\(z=2\left(cos\,\large\frac{\pi}{4}\normalsize+i\,sin\,\large\frac{\pi}{4}\normalsize\right)\)
\(w=3\left(cos\,\large\frac{5\pi}{6}\normalsize+i\,sin\,\large\frac{5\pi}{6}\normalsize\right)\)
Express in polar form: (a) \(\raise 0.1pt{zw}\) (b) \(\large\frac{z}{w}\small.\)
Show answer
(a) To multiply two numbers in polar form we multiply their moduli and add their arguments, if necessary bringing the argument back into the range \(-\pi\lt\theta\leq\pi\) by adding or subtracting multiples of \(2\pi\) as required.
$$
\begin{eqnarray}
zw &=& 6\left(\!cos\small\left(\frac{\pi}{4}\!+\!\frac{5\pi}{6}\right)\normalsize+i\,sin\small\left(\frac{\pi}{4}\!+\!\frac{5\pi}{6}\right)\normalsize\!\right)\\[6pt]
&=& 6\left(\!cos\small\left(\frac{3\pi\!+\!10\pi}{12}\right)\normalsize+i\,sin\small\left(\frac{3\pi\!+\!10\pi}{12}\right)\normalsize\!\right)\\[6pt]
&=& 6\left(\!cos\small\frac{13\pi}{12}\normalsize+i\,sin\small\frac{13\pi}{12}\normalsize\!\right)\\[6pt]
&=& 6\left(\!cos\small\left(\!\frac{13\pi}{12}\normalsize\!-\!2\pi\!\small\right)\normalsize+i\,sin\small\left(\!\frac{13\pi}{12}\normalsize\!-\!2\pi\!\small\right)\normalsize\!\right)\\[6pt]
&=& 6\left(\!cos\small\left(\!\frac{13\pi\!-\!24\pi}{12}\!\right)\normalsize\!+i\,sin\small\left(\!\frac{13\pi\!-\!24\pi}{12}\right)\normalsize\!\right)\\[6pt]
&=& 6\left(\!cos\small\left(\!-\frac{11\pi}{12}\right)\normalsize\!+i\,sin\small\left(\!-\frac{11\pi}{12}\right)\normalsize\!\right)
\end{eqnarray}
$$
(b) To divide two numbers in polar form we divide their moduli and subtract their arguments, if necessary bringing the argument back into the range \(-\pi\lt\theta\leq\pi\) by adding or subtracting multiples of \(2\pi\). That won't be necessary here.
$$
\begin{eqnarray}
\small\frac{z}{w}\normalsize &=& \small\frac{2}{3}\normalsize\left(\!cos\small\left(\frac{\pi}{4}\!-\!\frac{5\pi}{6}\right)\normalsize+i\,sin\small\left(\frac{\pi}{4}\!-\!\frac{5\pi}{6}\right)\normalsize\!\right)\\[6pt]
&=& \small\frac{2}{3}\normalsize\left(\!cos\small\left(\frac{3\pi\!-\!10\pi}{12}\right)\normalsize+i\,sin\small\left(\frac{3\pi\!-\!10\pi}{12}\right)\normalsize\!\right)\\[6pt]
&=& \small\frac{2}{3}\normalsize\left(\!cos\small\left(\!-\frac{7\pi}{12}\right)\normalsize\!+i\,sin\small\left(\!-\frac{7\pi}{12}\right)\normalsize\!\right)
\end{eqnarray}
$$
Stationery supplies
Pukka Pad: A4 squared notepads
Uni-ball Eye: fine-tip rollerball pens
Example 11 (non-calculator)
Given \(\raise 0.1pt{z=\!\!-\!1\!-\!i}\small,\) write \(\raise 0.2pt{z^{10}}\) in polar form.
Show answer
First we express \(\raise 0.1pt{z}\) in polar form.
$$
\begin{eqnarray}
\vert z\vert\ &=& \vert\!-\!1-i\,\vert\\[6pt]
&=& \sqrt{(-1)^2+(-1)^{2}}\\[6pt]
&=& \sqrt{2}
\end{eqnarray}
$$
To find the principal argument, in the interval \(-\pi\lt\theta\leq\pi\small,\) we use arctan to find the related acute angle, and then adjust so that it is in the correct Argand diagram quadrant. Here, the number is in the third quadrant (bottom left), so we use \(\pi\) plus the acute angle and then subtract \(2\pi\) to bring it into the correct interval.
$$
\begin{eqnarray}
arg(z) &=& \pi+tan^{-1}\LARGE\vert\small\frac{-1}{-1}\LARGE\vert\normalsize-2\pi \\[6pt]
&=& \pi+\small\frac{\pi}{4}\normalsize-2\pi \\[6pt]
&=& \small\frac{\pi}{4}\normalsize-\pi \\[6pt]
&=& -\small\frac{3\pi}{4}\normalsize \\[6pt]
\end{eqnarray}
$$
So \(z=\sqrt{2}\,\large\left(\normalsize cos\large\left(-\frac{3\pi}{4}\right)\normalsize\!+i\,sin\large\left(-\frac{3\pi}{4}\right)\right)\)
Raising \(\raise 0.1pt{z}\) to the power \(10\) requires de Moivre's Theorem:
$$ [r(cos\,\theta\!\small+\normalsize\!i\,sin\,\theta)]^n = r^{n}(cos\,n\theta\!\small+\normalsize\!i\,sin\,n\theta) $$
Substituting \(r\!=\!\sqrt{2}\small,\) \(\theta\!=\!\!\large-\!\frac{3\pi}{4}\) and \(n\!=\!10\) gives:
$$
\begin{eqnarray}
z^{10} &=& (\!\sqrt{2})^{10}\small\,\normalsize\left(\!cos\small\left(\!\!-\!\frac{30\pi}{4}\right)\normalsize\!+i\,sin\small\left(\!\!-\!\frac{30\pi}{4}\right)\!\normalsize\right)\\[6pt]
&=& 2^5\tiny\,\normalsize\left(\!cos\small\left(\!\!-\!\frac{15\pi}{2}\right)\normalsize\!+i\,sin\small\left(\!\!-\!\frac{15\pi}{2}\right)\!\normalsize\right)
\end{eqnarray}
$$
The argument \(\large-\frac{15\pi}{2}\) is outside the principal interval, so we adjust it:
$$ \small-\frac{15\pi}{2}\normalsize+4(2\pi) = \small\frac{\pi}{2} $$
Now we can write our final answer:
$$ z^{10}=32\tiny\,\normalsize\left(cos\small\,\frac{\pi}{2}\normalsize\!+i\,sin\small\,\frac{\pi}{2}\normalsize\right) $$
Example 12 (non-calculator)
Express each of the fourth roots of \(-\!1\!+\!i\) in polar form.
Show answer
Let \(\raise 0.1pt{z^4=-\!1\!+\!i}\small.\)
First we express \(\raise 0.1pt{z^4}\) in polar form.
$$
\begin{eqnarray}
\large\vert\normalsize z^4\large\vert\normalsize\ &=& \sqrt{(-1)^2+1^{2}}\\[6pt]
&=& \sqrt{2}
\end{eqnarray}
$$
The argument is in the second quadrant on an Argand diagram, so
$$
\begin{eqnarray}
arg(z^4) &=& \pi-tan^{-1}\LARGE\vert\small\frac{1}{-1}\LARGE\vert\normalsize \\[6pt]
&=& \pi-\small\frac{\pi}{4}\normalsize \\[6pt]
&=& \small\frac{3\pi}{4}\normalsize \\[6pt]
\end{eqnarray}
$$
So \(z^4=\sqrt{2}\,\left(cos\small\,\large\frac{3\pi}{4}\normalsize\!+i\,sin\small\,\large\frac{3\pi}{4}\normalsize\right)\)
So the fourth roots are as follows, not forgetting to allow for multiples of \(2\pi\small.\)
$$ z = 2^{\frac{1}{8}}\!\left(\!cos\left(\!\small\frac{3\pi}{4}\normalsize\!\!+\!2k\pi\!\right)\!\normalsize+i\small\,\normalsize sin\left(\!\small\frac{3\pi}{4}\normalsize\!\!+\!2k\pi\!\right)\!\!\right)^{\!\!\frac{1}{4}} $$
where \(k=0\small,\normalsize\ 1\small,\normalsize\ 2\small,\normalsize\ 3\small.\)
Now we apply de Moivre's Theorem:
$$ z = 2^{\frac{1}{8}}\!\left(\!cos\left(\!\small\frac{3\pi}{16}\normalsize\!\!+\!\small\frac{k\pi}{2}\normalsize\!\right)\!\normalsize+i\small\,\normalsize sin\left(\!\small\frac{3\pi}{16}\normalsize\!\!+\!\small\frac{k\pi}{2}\normalsize\!\right)\!\right) $$
where \(k=0\small,\normalsize\ 1\small,\normalsize\ 2\small,\normalsize\ 3\small.\)
To obtain separate expressions for each of these roots, we simply substitute each value of \(\raise 0.1pt{k}\) in turn.
When \(k=0\):
$$
\begin{eqnarray}
z_1 &=& 2^{\frac{1}{8}}\!\left(\!cos\left(\!\small\frac{3\pi}{16}\normalsize\!\!+\!\small\frac{0\pi}{2}\normalsize\!\right)\!\normalsize+i\small\,\normalsize sin\left(\!\small\frac{3\pi}{16}\normalsize\!\!+\!\small\frac{0\pi}{2}\normalsize\!\right)\!\right) \\[6pt]
&=& \sqrt[\leftroot{-1}\uproot{3}\scriptstyle 8]{2}\left(cos\,\small\frac{3\pi}{16}\normalsize+i\small\,\normalsize sin\,\small\frac{3\pi}{16}\normalsize\right)
\end{eqnarray}
$$
When \(k=1\):
$$
\begin{eqnarray}
z_2 &=& 2^{\frac{1}{8}}\!\left(\!cos\left(\!\small\frac{3\pi}{16}\normalsize\!\!+\!\small\frac{1\pi}{2}\normalsize\!\right)\!\normalsize+i\small\,\normalsize sin\left(\!\small\frac{3\pi}{16}\normalsize\!\!+\!\small\frac{1\pi}{2}\normalsize\!\right)\!\right) \\[6pt]
&=& \sqrt[\leftroot{-1}\uproot{3}\scriptstyle 8]{2}\left(cos\,\small\frac{11\pi}{16}\normalsize+i\small\,\normalsize sin\,\small\frac{11\pi}{16}\normalsize\right)
\end{eqnarray}
$$
When \(k=2\):
$$
\begin{eqnarray}
z_3 &=& 2^{\frac{1}{8}}\!\left(\!cos\left(\!\small\frac{3\pi}{16}\normalsize\!\!+\!\small\frac{2\pi}{2}\normalsize\!\right)\!\normalsize+i\small\,\normalsize sin\left(\!\small\frac{3\pi}{16}\normalsize\!\!+\!\small\frac{2\pi}{2}\normalsize\!\right)\!\right) \\[6pt]
&=& \sqrt[\leftroot{-1}\uproot{3}\scriptstyle 8]{2}\left(cos\,\small\frac{19\pi}{16}\normalsize+i\small\,\normalsize sin\,\small\frac{19\pi}{16}\normalsize\right)\\[6pt]
&=& \sqrt[\leftroot{-1}\uproot{3}\scriptstyle 8]{2}\left(cos\,\small\frac{19\pi\!-\!32\pi}{16}\normalsize+i\small\,\normalsize sin\,\small\frac{19\pi\!-\!32\pi}{16}\normalsize\right)\\[6pt]
&=& \sqrt[\leftroot{-1}\uproot{3}\scriptstyle 8]{2}\left(cos\,\small\left(\frac{-13\pi}{16}\right)\normalsize+i\small\,\normalsize sin\,\small\left(\frac{-13\pi}{16}\right)\normalsize\right)\\[6pt]
&=& \sqrt[\leftroot{-1}\uproot{3}\scriptstyle 8]{2}\left(cos\,\small\frac{13\pi}{16}\normalsize-i\small\,\normalsize sin\,\small\frac{13\pi}{16}\normalsize\right)
\end{eqnarray}
$$
When \(k=3\):
$$
\begin{eqnarray}
z_4 &=& 2^{\frac{1}{8}}\!\left(\!cos\left(\!\small\frac{3\pi}{16}\normalsize\!\!+\!\small\frac{3\pi}{2}\normalsize\!\right)\!\normalsize+i\small\,\normalsize sin\left(\!\small\frac{3\pi}{16}\normalsize\!\!+\!\small\frac{3\pi}{2}\normalsize\!\right)\!\right) \\[6pt]
&=& \sqrt[\leftroot{-1}\uproot{3}\scriptstyle 8]{2}\left(cos\,\small\frac{27\pi}{16}\normalsize+i\small\,\normalsize sin\,\small\frac{27\pi}{16}\normalsize\right)\\[6pt]
&=& \sqrt[\leftroot{-1}\uproot{3}\scriptstyle 8]{2}\left(cos\,\small\frac{27\pi\!-\!32\pi}{16}\normalsize+i\small\,\normalsize sin\,\small\frac{27\pi\!-\!32\pi}{16}\normalsize\right)\\[6pt]
&=& \sqrt[\leftroot{-1}\uproot{3}\scriptstyle 8]{2}\left(cos\,\small\left(\frac{-5\pi}{16}\right)\normalsize+i\small\,\normalsize sin\,\small\left(\frac{-5\pi}{16}\right)\normalsize\right)\\[6pt]
&=& \sqrt[\leftroot{-1}\uproot{3}\scriptstyle 8]{2}\left(cos\,\small\frac{5\pi}{16}\normalsize-i\small\,\normalsize sin\,\small\frac{5\pi}{16}\normalsize\right)
\end{eqnarray}
$$
Example 13 (non-calculator)
SQA Advanced Higher Maths 2022 Paper 1 Q3
Given that \(z_1=5+3i\) and \(z_2=6+2i\small,\) express \(\raise 0.1pt{z_{1}\overline{z_2}}\) in the form \(a+bi\) where \(a\) and \(b\) are real numbers.
Show answer
The complex conjugate \(\overline{z_2}=6-2i\small.\)
$$
\begin{eqnarray}
z_{1}\overline{z_2} &=& (5+3i)(6-2i)\\[6pt]
&=& 30-10i+18i-6i^2\\[6pt]
&=& 30+8i+6\\[6pt]
&=& 36+8i
\end{eqnarray}
$$
Example 14 (non-calculator)
SQA Advanced Higher Maths 2023 Paper 1 Q6
(a) Express \(z=1+\sqrt{3}\,i\) in polar form.
(b) Hence, or otherwise, show that \(z^3\) is real.
Show answer
(a) For the modulus, we use the distance formula (Pythagoras):
$$
\begin{eqnarray}
\vert z\vert\ &=& \sqrt{1^2+(\sqrt{3})^2}\\[6pt]
&=& \sqrt{1+3}\\[6pt]
&=& \sqrt{4}\\[8pt]
&=& \ 2\\[12pt]
\end{eqnarray}
$$
To find the principal argument, in the range \(-\pi\lt\theta\leq\pi\small,\) we use arctan:
$$
\begin{eqnarray}
\theta = arg(z) &=& tan^{-1}\small\left(\frac{\sqrt{3}}{1}\right)\normalsize \\[6pt]
&=& tan^{-1}\,\sqrt{3}\normalsize \\[6pt]
&=& \frac{\pi}{3} \\[6pt]
\end{eqnarray}
$$
So the polar form is:
$$ z=2\left(cos\,\small\frac{\pi}{3}\normalsize +i\,sin\,\small\frac{\pi}{3}\normalsize\right) $$
(b) To find \(\raise 0.1pt{z^3}\) we use de Moivre's Theorem:
$$ [r(cos\,\theta\!\small+\normalsize\!i\,sin\,\theta)]^n = r^{n}(cos\,n\theta\!\small+\normalsize\!i\,sin\,n\theta) $$
Substituting \(r\!=\!2\small,\) \(\theta\!=\!\,\large\!\frac{\pi}{3}\) and \(n\!=\!3\) gives:
$$
\begin{eqnarray}
z^3 &=& 2^3\small\,\normalsize\left(\!cos\,\small\frac{3\pi}{3}\normalsize\!+i\,sin\,\small\frac{3\pi}{3}\!\right)\\[6pt]
&=& 8\small\,\normalsize\left(cos\,\pi\!+i\,sin\,\pi\right)\\[6pt]
&=& 8\small\,\normalsize\left(-1\!+i\,(0)\right)\\[6pt]
&=& \!-\!8 \in\mathbb R
\end{eqnarray}
$$
Need an Advanced Higher Maths tutor?
Just use this handy little widget and our partner Bark.com will help you find one.
Past paper questions
Other great resources