Advanced Higher Maths Binomial Theorem
Course content
Using the binomial theorem:
$$(a+b)^n =\large\sum^{\normalsize n}_{\normalsize r=0}\normalsize\,\binom{n}{r}\,a^{n-r}\ b^{r}$$
$$\binom{n}{r}={}^n{C_r}=\small\frac{n!}{r!\,(n-r)!}\normalsize $$
for \(r,n\in\mathbb N,\) to expand an expression of the form \(\left(ax^{\tiny\,\normalsize p}+by^{\tiny\,\normalsize q}\right)^{n},\) where \(a,b\in \mathbb Q;\ p,q\in \mathbb Z;\ n\leq 7\)
Using the general term and finding a specific term in a binomial expansion.
Textbook page references
Find a Maths tutor
Need a tutor for Advanced Higher Maths?Click here to find a tutor in your area.
Example 1 (non-calculator)
Use the binomial theorem to expand and simplify \((2x-y)^{5}.\)
Show answer
Because \(n=5,\) our \(\large\binom{5}{r}\normalsize\) values will be the fifth row of Pascal's Triangle:
$$ \begin{gather}1\\
1\quad 1\\
1\quad 2\quad 1\\
1\quad 3\quad 3\quad 1\\
1\quad4\quad 6\quad4 \quad 1\\
1\quad5\quad 10\quad10\quad5\quad 1
\end{gather}
$$
Now we apply the binomial theorem:
$$ (2x-y)^5 = \sum^5_{r=0} \binom{5}{r}\ (2x)^{5-r}\ y^{r} $$
$$
\begin{eqnarray}
&=& (2x)^5+5(2x)^{4}(-y)+10(2x)^{3}(-y)^2 \\[6pt]
&& \:+10(2x)^{2}(-y)^3+5(2x)(-y)^4+(-y)^5 \\[12pt]
&=& 32x^5-80x^{4}y+80x^{3}y^2 \\[6pt]
&& \:-40x^{2}y^3+10xy^4-y^5
\end{eqnarray}
$$
Example 2 (calculator)
SQA Advanced Higher Maths 2017 Question 1
Write down the binomial expansion of \((\large\frac{2}{y^2}\normalsize-5y)^{3}\) and simplify your answer.
Show answer
This is similar to the previous example, but care is needed over the powers of the fractions.
Because \(n=3,\) our \(\large\binom{3}{r}\normalsize\) values will be the third row of Pascal's Triangle:
$$ \begin{gather}1\\
1\quad 1\\
1\quad 2\quad 1\\
1\quad 3\quad 3\quad 1\\
\end{gather}
$$
Now we apply the binomial theorem:
$$ \left(\small\frac{2}{y^2}\normalsize-5y\right)^{\!3} = \sum^3_{r=0} \binom{3}{r}\left(\small\frac{2}{y^2}\normalsize\right)^{\!3-r}\ (-5y)^{r} $$
$$
\begin{eqnarray}
&=& \binom{3}{0}\!\left(\small\!\frac{2}{y^2}\normalsize\!\right)^{\!3}+\binom{3}{1}\!\left(\small\!\frac{2}{y^2}\normalsize\!\right)^{\!2}\!(-5y)^1 \\[6pt]
&& +\binom{3}{2}\!\left(\!\small\frac{2}{y^2}\normalsize\!\right)^{\!1}\!(-5y)^2+\binom{3}{3}\!(-5y)^3 \\[12pt]
&=& 1\left(\!\small\frac{8}{y^6}\normalsize\!\right)+3\left(\!\small\frac{4}{y^4}\normalsize\!\right)(-5y) \\[6pt]
&& +3\left(\!\small\frac{2}{y^2}\normalsize\!\right)(25y^2)+1(-125y^3) \\[12pt]
&=& \small\frac{8}{y^6}\normalsize-\small\frac{60}{y^3}\normalsize+150-125y^3\\[6pt]
\end{eqnarray}
$$
Example 3 (calculator)
(a) Write down and simplify the general term in the binomial expansion of \(\left(\large\frac{2}{x}\normalsize-3x\right)^{12}.\)
(b) Hence, or otherwise, find the coefficient of the term in \(x^8.\)
Show answer
The Advanced Higher Maths specification says that \(n\) won't be more than \(7\) if you have to generate the full expansion, but there is no upper limit on \(n\) if you are asked for the general term or a specific term.
(a) When \(n=12,\) the general term is:
$$
\begin{eqnarray}
&& \binom{12}{r}\ \left(\frac{2}{x}\right)^{\!12-r}\ \left(-3x\right)^{r} \\[6pt]
&=& \binom{12}{r}\ \left(\frac{2^{12-r}}{x^{12-r}}\right)\ \left(-3\right)^{r}x^{r} \\[6pt]
&=& \binom{12}{r}\ \left(2^{12-r}\right)\ \left(-3\right)^{r}\ x^{r-(12-r)} \\[6pt]
&=& \binom{12}{r}\ \left(2^{12-r}\right)\ \left(-3\right)^{r}\ x^{2r-12}
\end{eqnarray}
$$
(b) First we find the value of \(r\) that corresponds to the term in \(x^8.\)
$$
\begin{eqnarray}
2r-12 &=& 8 \\[6pt]
2r &=& 20 \\[6pt]
r &=& 10 \\[6pt]
\end{eqnarray}
$$
Now we substitute \(r=10\) into the general term:
$$
\begin{eqnarray}
&& \binom{12}{r}\ \left(2^{12-r}\right)\ \left(-3\right)^{r}\ x^{2r-12} \\[6pt]
&=& \binom{12}{10}\ \left(2^{12-10}\right)\ \left(-3\right)^{10}\ x^{8}\\[6pt]
&=& \frac{12!}{10!(12-10)!} \ \left(2^{2}\right)\ \left(-3\right)^{10}\ x^{8}\\[6pt]
&=& \frac{12\times 11}{2!} \ \left(2^{2}\right)\ \left(-3\right)^{10}\ x^{8}\\[6pt]
&=& 66(4)(59049)x^{8}\\[6pt]
&=& 15\,588\,936\,x^{8}
\end{eqnarray}
$$
So the coefficient of \(x^8\) is \(15\,588\,936.\)
Recommended student books
Leckie: Advanced Higher Maths book
Hodder: 'How to Pass' revision book
Example 4 (calculator)
(a) Write down and simplify the general term in the binomial expansion of \(\left(5x+\large\frac{2}{x^2}\normalsize\right)^{9}.\)
(b) Hence, or otherwise, find the term that is independent of \(x.\)
Show answer
(a) When \(n=9,\) the general term is:
$$
\begin{eqnarray}
&& \binom{9}{r}\ \left(5x\right)^{9-r}\ \left(\frac{2}{x^2}\right)^{\!r}\\[6pt]
&=& \binom{9}{r}\ \left(5^{9-r}\right)\ \left(x^{9-r}\right)\ \left(\frac{2^r}{x^{2r}}\right)\\[6pt]
&=& \binom{9}{r}\ \left(5^{9-r}\right)\ \left(x^{9-r}\right)\ \left(2^r\right)\ \left(x^{-2r}\right)\\[6pt]
&=& \binom{9}{r}\ \left(5^{9-r}\right)\ \left(2^r\right)\ x^{9-r-2r}\\[6pt]
&=& \binom{9}{r}\ \left(5^{9-r}\right)\ \left(2^r\right)\ x^{9-3r}\\[6pt]
\end{eqnarray}
$$
(b) First we find the value of \(r\) for the term that is independent of \(x,\) which is the \(x^0\) term.
$$
\begin{eqnarray}
9-3r &=& 0 \\[6pt]
3r &=& 9 \\[6pt]
r &=& 3 \\[6pt]
\end{eqnarray}
$$
Now we substitute \(r=3\) into the general term:
$$
\begin{eqnarray}
&& \binom{9}{r}\ \left(5^{9-r}\right)\ \left(2^r\right)\ x^{9-3r}\\[6pt]
&=& \binom{9}{3}\ \left(5^{9-3}\right)\ \left(2^3\right)\ x^{0}\\[6pt]
&=& \frac{9!}{3!\,(9-3)!}\ \left(5^6\right)\ \left(2^3\right)\\[6pt]
&=& \frac{9!}{3!\,6!}\ \left(15\,625\right)\ \left(8\right)\\[6pt]
&=& \frac{9\times 8\times 7}{3\times 2\times 1}\ \left(15\,625\right)\ \left(8\right)\\[6pt]
&=& \left(84\right)\ \left(15\,625\right)\ \left(8\right)\\[6pt]
&=& 10\,500\,000
\end{eqnarray}
$$
Example 5 (calculator)
(a) Find and simplify the general term in the binomial expansion of \(\left(3x^2-\large\frac{a}{x^3}\normalsize\right)^{6},\) where \(a\gt 0\) is a constant.
(b) Given that the coefficient of \(x^2\) is \(19\,440,\) find the value of \(a.\)
Show answer
(a) When \(n=6,\) the general term is:
$$
\begin{eqnarray}
&& \binom{6}{r}\ \left(3x^2\right)^{6-r}\ \left(-\frac{a}{x^3}\right)^{\!r}\\[6pt]
&=& \binom{6}{r}\ \left(3^{6-r}\right)\ \left(x^2\right)^{6-r}\ \left(-a\right)^r\ x^{-3r}\\[6pt]
&=& \binom{6}{r}\ \left(3^{6-r}\right)\ \left(x^{12-2r}\right)\ \left(-a\right)^r\ x^{-3r}\\[6pt]
&=& \binom{6}{r}\ \left(3^{6-r}\right)\ \left(-a\right)^r\ x^{12-2r-3r}\\[6pt]
&=& \binom{6}{r}\ \left(3^{6-r}\right)\ \left(-a\right)^r\ x^{12-5r}\\[6pt]
\end{eqnarray}
$$
(b) First we find the value of \(r\) that corresponds to the term in \(x^2.\)
$$
\begin{eqnarray}
12-5r &=& 2 \\[6pt]
-5r &=& -\!10 \\[6pt]
5r &=& 10 \\[6pt]
r &=& 2 \\[6pt]
\end{eqnarray}
$$
Now we substitute \(r=2\) into the general term:
$$
\begin{eqnarray}
&& \binom{6}{r}\ \left(3^{6-r}\right)\ \left(-a\right)^r\ x^{12-5r}\\[6pt]
&=& \binom{6}{2}\ \left(3^{6-2}\right)\ \left(-a\right)^2\ x^{2}\\[6pt]
&=& \frac{6!}{2!\,(6-2)!}\ \left(3^4\right)\ \left(a^2\right)\ x^{2}\\[6pt]
&=& \frac{6!}{2!\,4!}\ \left(81\right)\ a^2\,x^2\\[6pt]
&=& \frac{6\times 5}{2}\ \left(81\right)\ a^2\,x^2\\[6pt]
&=& \left(15\right)\,\left(81\right)\,a^2\,x^2\\[6pt]
&=& 1215\,a^2\,x^2
\end{eqnarray}
$$
Finally, we can solve for \(a\).
$$
\begin{eqnarray}
1215\,a^2 &=& 19\,440 \\[6pt]
a^2 &=& \frac{19\,440}{1215} \\[6pt]
a^2 &=& 16 \\[6pt]
a &=& 4
\end{eqnarray}
$$
Note: We should not include the negative square root of \(16\) as we were told in the question that \(a\gt 0.\)
Example 6 (non-calculator)
Use the binomial theorem to determine the exact value of \(1.02^{4}.\)
Show answer
A question of this type hasn't appeared on an Advanced Higher exam paper since 2009, but it still seems fair enough to us!
$$
\begin{eqnarray}
&& 1.02^{4} \\[6pt]
&=& (1+0.02)^{4} \\[6pt]
&=& \small\sum^4_{r=0}\binom{4}{r}\normalsize\,(1)^{4-r}\,(0.02)^{r} \\[6pt]
&=& \small\sum^4_{r=0}\binom{4}{r}\normalsize\ (0.02)^{r} \\[10pt]
&=& 1(0.02^0)+4(0.02^1)+6(0.02^2) \\[6pt]
&& \:\:+4(0.02^3)+1(0.02^4) \\[10pt]
&=& 1+4(0.02)+6(0.0004) \\[6pt]
&& \:\:+4(0.000008)+0.00000016 \\[10pt]
&=& 1+0.08+0.0024 \\[6pt]
&& \:\:+0.000032+0.00000016 \\[10pt]
&=& 1.08243216
\end{eqnarray}
$$
Example 7 (non-calculator)
Determine the coefficient of \(x^3\) in the expansion of \(\left(1+\large\frac{x}{4}\normalsize\right)\left(2-x\right)^5.\)
Show answer
The general term in the binomial expansion of \(\left(2-x\right)^{5}\) is:
$$
\begin{eqnarray}
&& \binom{5}{r}\,2^{5-r}\,(-x)^r\\[6pt]
&=& \binom{5}{r}\,2^{5-r}\,(-1)^r\ x^r \\[6pt]
\end{eqnarray}
$$
The \(x^3\) term is obtained by the \(1\) from \(\left(1+\large\frac{x}{4}\right)\) being multiplied by the \(x^3\) term from the expansion of \(\left(2-x\right)^5\) plus the \(\large\frac{x}{4}\) being multiplied by the \(x^2\) term from the expansion of \(\left(2-x\right)^{5}.\)
The \(x^3\) term in \(\left(2-x\right)^5\) is:
$$
\begin{eqnarray}
&& \binom{5}{3}\,\left(2^{5-3}\right)\,(-1)^3\,x^3\\[6pt]
&=& \frac{5!}{3!\,2!}\ \left(2^2\right)\,(-1)\,x^3 \\[6pt]
&=& \frac{5\times 4}{2}\,(4)\,(-1)\,x^3 \\[6pt]
&=& -40x^3 \\[6pt]
\end{eqnarray}
$$
The \(x^2\) term in \(\left(2-x\right)^5\) is:
$$
\begin{eqnarray}
&& \binom{5}{2}\ 2^{5-2}\,(-1)^2\,x^2\\[6pt]
&=& \frac{5!}{2!\,3!}\,\left(2^3\right)\,(1)\,x^2 \\[6pt]
&=& (10)(8)x^2 \\[6pt]
&=& 80x^2 \\[6pt]
\end{eqnarray}
$$
So the coefficient of the \(x^3\) term in the expansion of \(\left(1+\large\frac{x}{4}\normalsize\right)\left(2-x\right)^5\) is \((1)(-40)+(\frac{1}{4})(80)=-20.\)
Need an Advanced Higher Maths tutor?
Just use this handy little widget and our partner Bark.com will help you find one.
Past paper questions
Other great resources