Advanced Higher Maths Sequences and Series
Course content
For arithmetic and geometric sequences and series, finding:
the \(n^{th}\) term
the sum to \(n\) terms
common difference of arithmetic sequences
common ratio of geometric sequences
Sum to infinity of a geometric series
Determining the condition for a geometric series to converge
Applying summation formulae; knowing and using sums of certain series, and other straightforward results and combinations of these
See also: Maclaurin Series .
Textbook page references
Find a Maths tutor
Need a tutor for Advanced Higher Maths?Click here to find a tutor in your area.
Sums of series
$$
\begin{eqnarray}
\small\textsf{Arithmetic series: }\normalsize && S_n=\small\frac12\normalsize n\large[\normalsize2a+(n\!-\!1)d\large]\normalsize \\[9pt]
\small\textsf{Geometric series: }\normalsize && S_n=\frac{a(1\!-\!r^n)}{1\!-\!r} \\[6pt]
&& S_\infty=\frac{a}{1\!-\!r}\:\ \left(\small\textsf{if }\vert r\vert\!\lt\!1\normalsize\right)\\[6pt]
\end{eqnarray}
$$
Given summations
$$
\begin{eqnarray}
\sum^{\normalsize {n}}_{\normalsize {r=1}}\,r &=& \frac{n(n\!\small+\normalsize\!1)}{2}\\[6pt]
\sum^{\normalsize {n}}_{\normalsize {r=1}}\,r^2 &=& \frac{n(n\!\small+\normalsize\!1)(2n\!\small+\normalsize\!1)}{6}\\[6pt]
\sum^{\normalsize {n}}_{\normalsize {r=1}}\,r^3 &=& \frac{n^2(n\!\small+\normalsize\!1)^2}{4}\\[6pt]
\end{eqnarray}
$$
Recommended textbook
Zeta Maths: Advanced Higher Maths
Best price, direct from the publisher
Example 1 (non-calculator)
The second and fifth terms of an arithmetic sequence are \(7\) and \(19\) respectively. Find the common difference, first term and the sum of the first \(50\) terms of the sequence.
Show answer
Let \(a\) represent the first term and \(d\) represent the common difference.
The 2nd term \(u_2=a+d\) and the 5th term \(u_5=a+4d.\) So:
$$
\begin{eqnarray}
a &+& d &=& 7\\[3pt]
a &+& 4d &=& 19
\end{eqnarray}
$$
Subtracting, \(3d=12\) so \(d=4.\)
Substituting, \(a=7\!-\!4=3.\)
Now we can use the formula for the sum of the first \(n\) terms, with \(n=50.\)
$$
\begin{eqnarray}
S_n &=& \small\frac12\normalsize n\large[\normalsize 2a+(n\!-\!1)d\large]\normalsize \\[9pt]
S_{50} &=& \small\frac{50}{2}\large[\normalsize 2(3)+(50\!-\!1)(4)\large]\normalsize \\[9pt]
&=& 25\large[\normalsize 6+(49)(4)\large]\normalsize \\[6pt]
&=& 25(202) \\[6pt]
&=& 5050
\end{eqnarray}
$$
Example 2 (calculator)
The second and fifth terms of an geometric sequence are \(24\) and \(3\) respectively. Find the common ratio, first term and the sum of the first \(10\) terms of the sequence.
Show answer
Let \(a\) represent the first term and \(r\) represent the common ratio.
The 2nd term \(u_2=ar\) and the 5th term \(u_5=ar^4.\) So:
$$
\begin{eqnarray}
ar &=& 24\\[3pt]
ar^4 &=& 3
\end{eqnarray}
$$
Dividing, \(r^3=\large\frac{3}{24}\normalsize =\large\frac{1}{8}\) so \(r=\sqrt[\leftroot{-1}\uproot{2}\scriptstyle 3]{\large\frac{1}{8}\normalsize}=\large\frac{1}{2}\small.\)
Substituting, \(\large\frac{1}{2}\normalsize a=24\) so \(a=48.\)
Now we can use the formula for the sum of the first \(n\) terms, with \(n=10.\)
$$
\begin{eqnarray}
S_n &=& \frac{a(1\!-\!r^n)}{1\!-\!r} \\[9pt]
S_{10} &=& \frac{48\left(1\!-\!(\frac{1}{2})^{10}\right)}{1\!-\!\frac{1}{2}} \\[9pt]
&=& \frac{3069}{32}
\end{eqnarray}
$$
Example 3 (non-calculator)
A geometric series has first term \(6\) and sum to infinity \(18\small.\) Find its fourth term.
Show answer
Let \(a\) represent the first term and \(r\) represent the common ratio.
$$
\begin{eqnarray}
S_\infty &=& \frac{a}{1\!-\!r}\\[9pt]
18 &=& \frac{6}{1\!-\!r}\\[9pt]
18(1-r) &=& 6\\[9pt]
1-r &=& \frac{6}{18} = \frac{1}{3}\\[9pt]
r &=& \frac{2}{3}
\end{eqnarray}
$$
So now we can find the fourth term, \(u_4.\)
$$
\begin{eqnarray}
u_4 &=& ar^{4-1}\\[6pt]
&=& 6\left(\frac{2}{3}\right)^{3}\\[6pt]
&=& 6\left(\frac{8}{27}\right)\\[6pt]
&=& 2\left(\frac{8}{9}\right)\\[6pt]
&=& \frac{16}{9}
\end{eqnarray}
$$
Revision guides
How To Pass Advanced Higher Maths
BrightRED AH Maths Study Guide
Example 4 (non-calculator)
The first three terms of a geometric series are given by \(x+6\small,\) \(x+2\small,\) \(x-1\small.\) Find \(x\small,\) explain why this series converges and find the sum to infinity.
Show answer
As usual, let \(a\) represent the first term and \(r\) represent the common ratio.
This solution relies upon the fact that any term in a geometric sequence or series divided by the preceeding term is, by definition, equal to the common ratio.
$$
\begin{eqnarray}
\frac{u_2}{u_1} &=& \frac{u_3}{u_2}\\[9pt]
\frac{x+2}{x+6} &=& \frac{x-1}{x+2}\\[9pt]
(x+2)(x+2) &=& (x+6)(x-1)\\[9pt]
x^2+4x+4 &=& x^2+5x-6\\[9pt]
4x+4 &=& 5x-6\\[9pt]
x &=& 10\\[9pt]
\end{eqnarray}
$$
So \(u_1=10\!+\!6=16,\) \(u_2=10\!+\!2=12\) and \(u_3=10\!-\!1=9.\)
The common ratio \(r=\frac{12}{16}=\frac{3}{4}.\) The series converges because \(-1\lt r\lt 1.\) So the sum to infinity exists.
$$
\begin{eqnarray}
S_\infty &=& \frac{a}{1\!-\!r}\\[9pt]
&=& \frac{16}{1\!-\!\frac{3}{4}}\\[9pt]
&=& 16(4)\\[9pt]
&=& 64
\end{eqnarray}
$$
Example 5 (calculator)
Find the lowest value of \(n\) for which the sum \(S_n\) of the arithmetic series \(5+8+11+14+\,\small...\,\) exceeds \(500\small.\)
Show answer
The first term \(a=5\) and the common difference \(d=3.\)
$$
\begin{gather}
S_n \gt 500 \\[9pt]
\small\frac12\normalsize n\large[\normalsize 2a+(n\!-\!1)d\large]\normalsize \gt 500 \\[9pt]
\small\frac12\normalsize n\large[\normalsize 2(5)+3(n\!-\!1)\large]\normalsize \gt 500 \\[9pt]
n(10+3n-3) \gt 1000 \\[9pt]
n(3n+7) \gt 1000 \\[9pt]
3n^2+7n-1000 \gt 0 \\[9pt]
\end{gather}
$$
The critical values are \(n=\large\frac{-7\pm\sqrt{7^2-4(3)(-1000)}}{6}\normalsize\) which gives \(n\approx 17.1\) or \(n\approx -19.5\small.\)
The negative value can clearly be disregarded, so \(S_{17}\lt 500\) but \(S_{18}\gt 500.\) The answer is \(n=18\small.\)
Example 6 (calculator)
Find the sum of the finite arithmetic series \(7+11+15+\,\small...\,\normalsize +163\small.\)
Show answer
The first term \(a=7\) and the common difference \(d=4.\)
First we must find the number of terms, \(n\small.\)
$$
\begin{gather}
u_n = a+(n-1)d \\[6pt]
163 = 7+4(n-1) \\[6pt]
163 = 7+4n-4 \\[6pt]
163 = 4n+3 \\[6pt]
4n = 160 \\[6pt]
n = 40
\end{gather}
$$
Now we can find the sum of the first \(40\) terms:
$$
\begin{eqnarray}
S_n &=& \small\frac12\normalsize n\large[\normalsize 2a+(n\!-\!1)d\large]\normalsize \\[9pt]
S_{40} &=& \small\frac{40}{2}\large[\normalsize 2(7)+(40\!-\!1)(4)\large]\normalsize \\[9pt]
&=& 20\large[\normalsize 14+39\times 4\large]\normalsize \\[6pt]
&=& 20(170) \\[6pt]
&=& 3400
\end{eqnarray}
$$
Example 7 (calculator)
Find the value of \(L\) for which \(65+61+57+53+\,\small...\,\normalsize +L = 96\small.\)
Show answer
The first term \(a=65\) and the common difference \(d=-4.\)
First we must find the number of terms, \(n\small.\)
$$
\begin{gather}
S_n = \small\frac12\normalsize n\large[\normalsize 2a+(n\!-\!1)d\large]\normalsize \\[9pt]
96 = \small\frac{n}{2}\large[\normalsize 2(65)-4(n\!-\!1)\large]\normalsize \\[9pt]
96\times 2 = n(130-4n+4) \\[9pt]
96\times 2 = n(-4n+134) \\[9pt]
96 = n(-2n+67) \\[9pt]
96 = -2n^2+67n \\[9pt]
2n^2-67n+96 = 0 \\[9pt]
(2n-3)(n-32)= 0 \\[9pt]
\end{gather}
$$
$$
\begin{eqnarray}
2n-3=0 &\:\ \small\textsf{or}\normalsize\ & n-32=0 \\[6pt]
n=\small\frac{3}{2}\normalsize &\:\ \small\textsf{or}\normalsize\ & n=32 \\[6pt]
\end{eqnarray}
$$
Clearly only positive integer values of \(n\) make sense, so \(n=32\small.\)
Now we can find \(L\small,\) because we know that it is the \(32^{nd}\) term.
$$
\begin{eqnarray}
u_n &=& a+(n-1)d \\[6pt]
u_{32} &=& 65+(32-1)(-4) \\[6pt]
&=& 65-4(31) \\[6pt]
&=& 65-124 \\[6pt]
&=& -\!59
\end{eqnarray}
$$
So \(L=-\!59\small.\)
Scientific calculators
Casio FX-85GTCW scientific calculator
Casio FX-991CW advanced calculator
Example 8 (non-calculator)
\(S_n\) is defined by:
$$ \sum^{\normalsize {n}}_{\normalsize {r=1}}\,\left(r^3-2r\right) $$
Find an expression for \(S_{n},\) fully factorising your answer.
Show answer
This example requires the summation formulae, which are given on your formulae list.
$$
\begin{eqnarray}
\sum^{\normalsize {n}}_{\normalsize {r=1}}\,\left(r^3\!-\!2r\right) &=& \frac{n^2(n\!\small+\normalsize\!1)^2}{4} - 2\left[\frac{n(n\!\small+\normalsize\!1)}{2}\right]\\[9pt]
&=& \frac{n^2(n\!\small+\normalsize\!1)^2}{4} - \frac{4n(n\!\small+\normalsize\!1)}{4}\\[9pt]
&=& \frac{n(n\!\small+\normalsize\!1)}{4}\large\left[\normalsize n(n+1)-4\large\right]\normalsize\\[9pt]
&=& \frac{n(n\!\small+\normalsize\!1)}{4}\large\left(\normalsize n^2+n-4\large\right)\normalsize\\[9pt]
&=& \frac{n(n\!\small+\normalsize\!1)(n^2\!+\!n\!-\!4)}{4}
\end{eqnarray}
$$
Example 9 (calculator)
Evaluate:
$$ \sum^{\normalsize {50}}_{\normalsize {r=20}}\,3r^2 $$
Show answer
The given summation formula starts counting at the first term, so we sum from 1 to 50 and subtract 1 to 19.
$$
\begin{eqnarray}
\sum^{\normalsize {50}}_{\normalsize {r=20}}\,3r^2 &=& \sum^{\normalsize {50}}_{\normalsize {r=1}}\,3r^2 - \sum^{\normalsize {19}}_{\normalsize {r=1}}\,3r^2 \\[9pt]
&=& 3\left[\frac{50(51)(101)}{6} - \frac{19(20)(39)}{6}\right]\\[9pt]
&=& \frac{257\,550}{2} - \frac{14\,820}{2}\\[9pt]
&=& 121\,365\\[9pt]
\end{eqnarray}
$$
Example 10 (calculator)
SQA Advanced Higher Maths 2015 Paper Q3
The sum of the first twenty terms of an arithmetic sequence is 320. The twenty-first term is 37. What is the sum of the first ten terms?
Show answer
We have been given two facts about this sequence, so we use each of them to obtain an equation involving the first term \(a\) and the common difference \(d\small.\) Then we solve the two equations simultaneously and evaluate \(S_{10}\small.\)
$$
\begin{gather}
S_{20} = 320 \\[7pt]
\small\frac12\normalsize (20)\large[\normalsize 2a+(20\!-\!1)d\large]\normalsize = 320 \\[7pt]
10(2a+19d) = 320 \\[7pt]
2a+19d = 32\:\:① \\[18pt]
u_{21} = 37 \\[7pt]
a+(21-1)d = 37 \\[7pt]
a+20d = 37\:\:② \\[7pt]
\end{gather}
$$
By doubling equation ② we can eliminate \(a\) and find \(d\small.\)
$$
\begin{gather}
2a+40d=74\:\:②\!\times\!2\\[7pt]
2a+19d = 32\:\:①
\end{gather}
$$
Subtracting gives us \(21d=42\) so \(d=2\small.\)
Substituting into equation ② gives us \(a+40=37\) so \(a=-3\small.\)
Now we can find the sum of the first ten terms:
$$
\begin{eqnarray}
S_{10} &=& \small\frac12\normalsize (10)\large[\normalsize 2a+(10\!-\!1)d\large] \\[9pt]
&=& \small\frac12\normalsize (10)\large[\normalsize 2(-3)+(10\!-\!1)(2)\large]\\[9pt]
&=& 5(-6+9\times 2)\\[9pt]
&=& 5\times 12\\[9pt]
&=& 60\\[9pt]
\end{eqnarray}
$$
Stationery supplies
Pukka Pad: A4 squared notepads
Uni-ball Eye: fine-tip rollerball pens
Example 11 (non-calculator)
SQA Advanced Higher Maths 2023 Paper 1 Q7
(a) Find an expression for
$$ \sum^{\normalsize {n}}_{\normalsize {r=1}}\,\left(r^2+3r\right) $$
in terms of \(n\small.\) Express your answer
in the form \(\frac{1}{3}n(n+a)(n+b)\small.\)
(b) Hence, or otherwise, find
$$ \sum^{\normalsize {20}}_{\normalsize {r=11}}\,\left(r^2+3r\right)\small. $$
Show answer
(a) Using the given summation formulae:
$$
\begin{eqnarray}
&\phantom{=}& \sum^{\normalsize {n}}_{\normalsize {r=1}}\,\left(r^2\!+\!3r\right)\\[9pt]
&=& \sum^{\normalsize {n}}_{\normalsize {r=1}}\,r^2 + 3\sum^{\normalsize {n}}_{\normalsize {r=1}}\,r\\[9pt]
&=& \frac{n(n\!\small+\normalsize\!1)(2n\!\small+\normalsize\!1)}{6} + 3\left[\frac{n(n\!\small+\normalsize\!1)}{2}\right]\\[9pt]
&=& \frac{n(n\!\small+\normalsize\!1)(2n\!\small+\normalsize\!1)}{6} + \frac{9n(n\!\small+\normalsize\!1)}{6}\\[9pt]
&=& \small\frac{1}{6}\normalsize n(n\!\small+\normalsize\!1)\left[(2n\!\small+\normalsize\!1)+9\right]\\[9pt]
&=& \small\frac{1}{6}\normalsize n(n\!\small+\normalsize\!1)\left(2n\!\small+\normalsize\!10\right)\\[9pt]
&=& \small\frac{1}{3}\normalsize n(n\!\small+\normalsize\!1)\left(n\!\small+\normalsize\!5\right)
\end{eqnarray}
$$
(a) This part is similar to the previous example.
$$
\begin{eqnarray}
&\phantom{=}& \sum^{\normalsize {20}}_{\normalsize {r=11}}\,\left(r^2\!+\!3r\right)\\[9pt]
&=& \sum^{\normalsize {20}}_{\normalsize {r=1}}\,\left(r^2\!+\!3r\right) - \sum^{\normalsize {10}}_{\normalsize {r=1}}\,\left(r^2\!+\!3r\right) \\[9pt]
&=& \small\frac{20}{3}\normalsize(20\!\small+\normalsize\!1)\left(20\!\small+\normalsize\!5\right) - \small\frac{10}{3}\normalsize(10\!\small+\normalsize\!1)\left(10\!\small+\normalsize\!5\right)\\[9pt]
&=& \small\frac{20\times 21\times 25}{3}\normalsize - \small\frac{10\times 11\times 15}{3}\normalsize\\[9pt]
&=& 3500 - 550\\[9pt]
&=& 2950\\[9pt]
\end{eqnarray}
$$
Example 12 (calculator)
SQA Advanced Higher Maths 2023 Paper 2 Q8
The fourth and seventh terms of a geometric sequence are 9 and 243 respectively.
(a) Find the:
(i) common ratio
(ii) first term.
(b) Show that \(\large\frac{S_{2n}}{S_n}\normalsize =1+3^n\) where \(S_n\) represents the sum of the first n terms of this geometric sequence.
Show answer
Let \(a\) represent the first term and \(r\) represent the common ratio.
(a) (i) The 4nd term \(u_4=ar^3\) and the 7th term \(u_7=ar^6.\) So:
$$
\begin{eqnarray}
ar^3 &=& 9\\[6pt]
ar^6 &=& 243
\end{eqnarray}
$$
Dividing, \(r^3=\large\frac{243}{9}\normalsize =27\) so \(r=\sqrt[\leftroot{-1}\uproot{2}\scriptstyle 3]{27}=3.\)
(a) (ii) Substituting:
$$
\begin{eqnarray}
ar^3 &=& 9\\[6pt]
27a &=& 9\\[6pt]
a &=& \small\frac{9}{27}\\[6pt]
a &=& \small\frac{1}{3}
\end{eqnarray}
$$
(b) Now we can use the formula for the sum of the first \(n\) terms.
$$
\begin{eqnarray}
S_n &=& \frac{a(1\!-\!r^n)}{1\!-\!r} \\[9pt]
&=& \frac{\frac{1}{3}(1\!-\!3^n)}{1\!-\!3} \\[9pt]
&=& -\!\small\frac{2}{3}\normalsize (1\!-\!3^n) \\[9pt]
\end{eqnarray}
$$
Replacing the \(n\) by \(2n\small,\) we can see that:
$$ S_{2n}= -\small\frac{2}{3}\normalsize (1\!-\!3^{2n}) $$
Now we are ready to prove the given statement. Starting with the left hand side and making use of the difference of two squares structure of the numerator:
$$
\begin{eqnarray}
\frac{S_{2n}}{S_{n}} &=& \large\frac{\small-\frac{2}{3}\normalsize (1\!-\!3^{2n})}{\small-\frac{2}{3}\normalsize (1\!-\!3^n)}\\[6pt]
&=& \frac{1\!-\!3^{2n}}{1\!-\!3^n}\\[6pt]
&=& \frac{1^2\!-\!(3^{n})^2}{1\!-\!3^n}\\[6pt]
&=& \frac{(1\!+\!3^n)(1\!-\!3^n)}{1\!-\!3^n}\\[6pt]
&=& 1+3^n \small\textsf{ as required.}
\end{eqnarray}
$$
Need an Advanced Higher Maths tutor?
Just use this handy little widget and our partner Bark.com will help you find one.
Past paper questions
Other great resources