Advanced Higher Maths
Matrices

 Our generous sponsors 

Course content

  • Addition, subtraction, multiplication by a scalar, multiplication of matrices
  • Properties of matrix addition and multiplication (commutativity, associativity, distributivity)
  • Properties of transpose (symmetric, skew-symmetric, orthogonal), identity matrix and inverse
  • Finding the determinant, adjugate and inverse of \(2\!\times\!2\) and \(3\!\times\!3\) matrices
  • Using \(2\!\times\!2\) transformation matrices: rotation, reflection, dilation and composition of transformations
  • See also: Systems of Equations.

Textbook page references

Find a Maths tutor

Need a tutor for Advanced Higher Maths?
Click here to find a tutor in your area. 

×

Matrix transformation

Anti-clockwise rotation through an angle \(\theta\) about the origin:

$$\begin{pmatrix} cos\,\theta & -sin\,\theta\,\cr sin\,\theta & \phantom{-}cos\,\theta\, \end{pmatrix}$$

This is the only transformation given on the formulae list. You need to either know or be able to very quickly derive the matrices for reflections (in either axis or \(y\!=\!\!\small\pm\!\normalsize x\)) and dilations (centred on the origin).

×

Transformation matrices

This two-step algorithm can help you quickly derive the \(2\!\times\!2\) transformation matrices that represent reflections, rotations or dilations.

Step 1: Find the image of \(\raise 0.2pt{(1,0)}\) and write the coordinates in the first column of the transformation matrix.

Step 2: Find the image of \(\raise 0.2pt{(0,1)}\) and write these coordinates in the second column of the transformation matrix.

Properties of matrices

The following properties are listed in the course specification. You need to know and be able to apply these.

  • Addition is commutative: \(A\!+\!B=B\!+\!A\)
  • Addition is associative: \((A\!+\!B)\!+\!C=A\!+\!(B\!+\!C)\)
  • Multiplication is not commutative, in general: \(AB\neq BA\)
  • Multiplication is associative: \((AB)C=A(BC)\)
  • Addition is distributive over multiplication: \(A(B\!+\!C)=AB\!+\!AC\)
  • \((A')'=A\)
  • \((A\!+\!B)'=A'\!+\!B'\)
  • \((AB)'=B'A'\)
  • A square matrix \(A\) is orthogonal if \(A'A=AA'=I\)
  • \(B=A^{-1}\) if \(AB=BA=I\)
  • \(det(AB)=det(A)\,det(B)\)
  • \((AB)^{-1}=B^{-1}A^{-1}\small.\)

Recommended textbook

Zeta Maths: Advanced Higher Maths 
 Best price, direct from the publisher

Example 1 (non-calculator)

Matrix \(A\) is defined by \(A=\begin{pmatrix} -4 &\!\!-\!3\,\cr 6 &\!\!\phantom{-}\!5\, \end{pmatrix}\small.\)
Find: (a) \(A^{-1}\)  (b) \(A'\small.\)

Example 2 (non-calculator)

Matrix \(P=\begin{pmatrix} -9 &\!\!\phantom{-}\!3\,\cr n &\!\!\phantom{-}\!4\, \end{pmatrix}\small,\) where \(\raise 0.2pt{n\in\mathbb R}\small.\) Find the value of \(\raise 0.2pt{n}\) such that \(P\) is singular.

Example 3 (non-calculator)

Matrix \(A=\begin{pmatrix} \,4 &\!2\,\cr \,1 &\!p\, \end{pmatrix}\) and matrix \(B=\begin{pmatrix} \,8 &\!2\,\cr \,q &\!1\, \end{pmatrix}\small.\) Given that \(B=2A'\small,\) determine the values of \(\raise 0.2pt{p}\) and \(\raise 0.2pt{q}\small.\)

Revision guides

How To Pass Advanced Higher Maths 
BrightRED AH Maths Study Guide 

Example 4 (non-calculator)

Show that \(A\!=\!\begin{pmatrix} \frac{\sqrt{3}}{2} &\!\!\!\!-\!\frac{1}{2}\cr \frac{1}{2} &\!\!\!\!\!\phantom{-}\!\frac{\sqrt{3}}{2} \end{pmatrix}\) is orthogonal.

Example 5 (non-calculator)

For any \(2\!\times\!2\) matrix \(A\small,\) show that \(\raise 0.2pt{A\!+\!A'}\) is symmetric and \(\raise 0.2pt{A\!-\!A'}\) is skew-symmetric.

Example 6 (non-calculator)

\(A\) is the matrix \(\begin{pmatrix} 3 & \!0\cr \lambda & \!\!\!-\!2 \end{pmatrix}\small.\) Show that \(A^2\) can be expressed in the form \(pA+ qI\small,\) stating the values of \(p\) and \(q\small.\)

Stationery supplies

Pukka Pad: A4 squared notepads 
Uni-ball Eye: fine-tip rollerball pens 

Example 7 (non-calculator)

The matrix \(\raise 0.3pt{A=\begin{pmatrix} \phantom{-}2 & \phantom{-}3 & \phantom{-}1\cr -1 & \phantom{-}\mu & \phantom{-}4\cr \phantom{-}5 & \phantom{-}0 & -2 \end{pmatrix}\small.}\)
Given that the determinant of \(A\) is \(36\small,\) determine the value of \(\mu\small.\)

Example 8 (non-calculator)

SQA Advanced Higher Maths 2015 Q5

Obtain the value(s) of \(p\) for which the matrix \(\raise 0.3pt{A=\begin{pmatrix} p & \phantom{-}2 & \phantom{-}0\cr 3 & \phantom{-}p & \phantom{-}1\cr 0 & -1 & -1 \end{pmatrix}}\) is singular.

Example 9 (non-calculator)

Use elementary row operations to find the inverse of the non-singular matrix \(\raise 0.3pt{A=}\begin{pmatrix} \phantom{-}1 & \phantom{-}2 & -1\cr -2 & \phantom{-}0 & \phantom{-}1\cr \phantom{-}1 & -1 & \phantom{-}0 \end{pmatrix}\small.\)

Scientific calculators

Casio FX-85GTCW scientific calculator 
Casio FX-991CW advanced calculator 

Example 10 (non-calculator)

(a)  Write down the \(2\!\times\!2\) matrix \(M_1\) associated with reflection in the \(\raise 0.3pt{x}\)-axis.
(b)  Write down the \(2\!\times\!2\) matrix \(M_2\) that represents reflection in the line \(\raise 0.3pt{y\!=\!\!-\!x\small.}\)
(c)  Find the \(2\!\times\!2\) matrix \(M_3\) associated with reflection in the line \(\raise 0.3pt{y\!=\!\!-\!x}\) followed by reflection in the \(\raise 0.3pt{x}\)-axis.
(d)  State the single transformation associated with \(M_3\small.\)

Example 11 (calculator)

SQA Advanced Higher Maths 2018 Q11

(a)  Obtain the matrix, \(A\small,\) associated with an anticlockwise rotation of \(\frac{\pi}{3}\) radians about the origin.
(b)  Find the matrix, \(B\small,\) associated with reflection in the \(\raise 0.3pt{x}\)-axis.
(c)  Hence obtain the matrix, \(P\small,\) associated with an anticlockwise rotation of \(\frac{\pi}{3}\) radians about the origin followed by reflection in the \(\raise 0.3pt{x}\)-axis, expressing your answer using exact values.
(d)  Explain why matrix \(P\) is not associated with rotation about the origin.

Need an Advanced Higher Maths tutor?

Just use this handy little widget and our partner Bark.com will help you find one.

Past paper questions

Matrix operations:
2016 Exemplar Paper Q7
2016 Paper Q7 (solution)
2017 Paper Q7 (solution)
2018 Paper Q7 (solution)
2019 Paper Q2 (solution)
2019 Specimen Paper 1 Q1
Determinant and inverse:
2016 Exemplar Paper Q7
2016 Specimen Paper Q6
2016 Paper Q7 (solution)
2017 Paper Q7 (solution)
2018 Paper Q7 (solution)
2019 Paper Q2 (solution)
2019 Specimen Paper 1 Q1
Transformation matrices:
2016 Exemplar Paper Q11
2018 Paper Q11 (solution)
2023 Paper 1 Q9

Other great resources

Notes - Auchmuty High School
Notes - St Machar Academy
Notes and exercises
- St Andrew's Academy
Notes - Hyndland Secondary School
Lesson notes - Maths 777
1. Matrix algebra
2. Matrix multiplication
3. 2x2 inverses
4. 3x3 inverses
5. Transformation matrices
Videos - Clelland Maths
Videos - Mr Thomas Maths
Videos - St Andrew's Academy
Notes and examples - Maths Mutt
Worksheet - Dunblane High School

⇦ AH topic list  ⇧ Top of this page