Advanced Higher Maths
Differential Equations

 Our generous sponsors 

Course content

  • Finding general and particular solutions to these types of ordinary differential equations (ODEs):
    • 1st order separable: \(\large\frac{dy}{dx}\normalsize=g(x)h(y)\) or \(\large\frac{dy}{dx}\normalsize=\large\frac{g(x)}{h(y)}\normalsize\)
    • 1st order linear: \(\large\frac{dy}{dx}\normalsize+P(x)\small\,\normalsize y=Q(x)\)
    • 2nd order homogeneous: \(a\large\frac{d^{2}y}{dx^2}\normalsize+b\large\frac{dy}{dx}\normalsize+cy=0\)
    • 2nd order non-homogeneous: \(a\large\frac{d^{2}y}{dx^2}\normalsize+b\large\frac{dy}{dx}\normalsize+cy=f(x)\)
  • For second-order differential equations, the roots of the auxiliary equation may be:
    • real and distinct
    • real and equal
    • complex conjugates. More...
×

Second order linear ODEs

The nature of the root(s) of the auxiliary equation tells us the form of the general solution (if homogeneous) or complementary function (if non-homogeneous).

Real, distinct roots \(\raise 0.2pt{\boldsymbol{p}}\) and \(\raise 0.3pt{\boldsymbol{q}}\):
\(\:\:y=Ae^{\tiny\,\normalsize px}+Be^{\tiny\,\normalsize qx}\)

Real, repeated root \(\raise 0.2pt{\boldsymbol{p}}\):
\(\:\:y=(A+Bx)e^{\tiny\,\normalsize px}\)

Complex conjugate roots \(\raise 0.2pt{\boldsymbol{p\pm qi}}\):
\(\:\:y=e^{\tiny\,\normalsize px}\left(A\,sin\,qx+B\,cos\,qx\right)\)

where \(\raise 0.2pt{A}\) and \(\raise 0.2pt{B}\) are constants.

These are not on the formulae list. 😢

Textbook page references

Find a Maths tutor

Need a tutor for Advanced Higher Maths?
Click here to find a tutor in your area. 

×

Example 1 (non-calculator)

Find the general solution of the differential equation:

$$ 3y\,\small\frac{dy}{dx}\normalsize=\small\frac{2x}{y}\normalsize $$

Example 2 (non-calculator)

Find the general solution of the following differential equation, expressing \(\raise 0.3pt{y}\) explicitly as a function of \(\raise 0.2pt{x\small.}\)

$$ x\,\small\frac{dy}{dx}\normalsize=y-y^2 $$

Example 3 (non-calculator)

Find the particular solution of this differential equation, in implicit form, given that \(\raise 0.3pt{y\!=\!\large\frac{\pi}{2}}\) when \(\raise 0.3pt{x\!=\!\large\frac{\pi}{4}\small.}\)

$$ \small\frac{dy}{dx}\normalsize=\small\frac{sec\,y}{y}\normalsize $$

Recommended textbook

Zeta Maths: Advanced Higher Maths 
 Best price, direct from the publisher

Example 4 (non-calculator)

Solve the differential equation:

$$ \small\frac{dy}{dx}\normalsize+2y=5e^{3x} $$

Example 5 (non-calculator)

Find the general solution of the differential equation:

$$ x\small\,\frac{dy}{dx}\normalsize+2y=cos\,x $$

Example 6 (non-calculator)

Find the particular solution of the following differential equation, given that \(\raise 0.3pt{y\!=\!2}\) and \(\large\frac{dy}{dx}\normalsize\!=\!-\!11\) when \(\raise 0.2pt{x\!=\!0}\small.\)

$$ \small\frac{d^{2}y}{dx^2}\normalsize-3\small\frac{dy}{dx}\normalsize-10y=0 $$

Revision guides

How To Pass Advanced Higher Maths 
BrightRED AH Maths Study Guide 

Example 7 (non-calculator)

Find the general solution of the differential equation:

$$ 9\small\frac{d^{2}y}{dx^2}\normalsize-12\small\frac{dy}{dx}\normalsize+4y=0 $$

Example 8 (non-calculator)

Find the general solution of the differential equation:

$$ \small\frac{d^{2}y}{dx^2}\normalsize+2\small\frac{dy}{dx}\normalsize+5y=0 $$

Example 9 (non-calculator)

Find the general solution of the differential equation:

$$ \small\frac{d^{2}y}{dx^2}\normalsize-5\small\frac{dy}{dx}\normalsize+4y=4x-1 $$

Scientific calculators

Casio FX-85GTCW scientific calculator 
Casio FX-991CW advanced calculator 

Example 10 (non-calculator)

Find the general solution of the differential equation:

$$ \small\frac{d^{2}y}{dx^2}\normalsize-4\small\frac{dy}{dx}\normalsize+4y=6e^{2x} $$

Example 11 (non-calculator)

SQA Advanced Higher Maths 2017 Q14

Find the particular solution of the differential equation:

$$ \small\frac{d^{2}y}{dx^2}\normalsize-6\small\frac{dy}{dx}\normalsize+9y=8\,sin\,x+19\,cos\,x $$

given that \(y\!=\!7\) and \(\large\frac{dy}{dx}\normalsize\!=\!\large\frac12\normalsize\) when \(x\!=\!0.\)

Need an Advanced Higher Maths tutor?

Just use this handy little widget and our partner Bark.com will help you find one.

Past paper questions

Separable:
2016 Exemplar Paper Q18
2016 Paper Q16 (solution)
2017 Paper Q9 (solution)
2019 Paper Q13 (solution)
2019 Specimen Paper 2 Q6
First order:
2016 Specimen Paper Q15b
2018 Paper Q15b (solution)
Second order:
2016 Exemplar Paper Q17
2016 Paper Q15 (solution)
2017 Paper Q14 (solution)
2019 Paper Q8 (solution)
2019 Specimen Paper 2 Q12
2023 Paper 1 Q5

Other great resources

Notes - Auchmuty High School
1. Differential equations
2. Further differential equations
Notes and exercises
- St Andrew's Academy
Notes - Hyndland Secondary School
1. Separable differential equations
2. 1st order differential equations
3. 2nd order differential equations
Lesson notes - Maths 777
1. First order separable
2. First order non-separable
3. Second order homogeneous
4. Second order non-homogeneous
Videos - Mr Thomas Maths
Videos - St Andrew's Academy
Notes and examples - Maths Mutt
Worksheets - Armadale Academy
Worksheet - Dunblane High School

⇦ AH topic list  ⇧ Top of this page