Gradient

You should be able to calculate the gradient of either a slope of inclination or declination.

To find the gradient of a slope, we use the following formula.

$$
\text { Gradient }=\frac{\text { Vertical Distance }}{\text { Horizonta Distance }}
$$

Can you see that

$$
\frac{B E}{A E}=\frac{C F}{A F}=\frac{D G}{A G}
$$

$$
\frac{5}{10}=\frac{10}{20}=\frac{15}{30}
$$

This shows us that if we have a continuous straight line, the gradient, i.e. the steepness of the slope never changes, unless the line itself changes direction. Here we can see that the gradient $=\frac{1}{2}$ when we simplify the fraction

Example 2: Find the gradient of the following line.

12

Note that gradient doesn't have any units. It is just a value. The steeper the slope, the bigger the gradient.

$$
\begin{aligned}
& \text { Gradient }=\frac{V D}{H D} \\
& \text { Gradient }=\frac{36}{12} \\
& \text { Gradient }=3
\end{aligned}
$$

Do not confuse finding the gradient with finding the size of the $3^{\text {rd }}$ side of the right angled triangle. (That's Pythagoras). We merely draw in the vertical and horizontal lines as a guide to help us identify the vertical and horizontal dimensions.

Example 3: Find the gradient of the following line.

When we measure a downward slope, we say it has a negative gradient. The reasons for this will become clear when you do Higher Maths, but for now just remember that if it is a climbing slope, it has a positive gradient. If it is a falling slope, it has a negative gradient. The formula stays the same.

Also note that, the gradient won't always work out to be a whole number, if this is the case, as in example 1 and 3 , we usually just leave it as a fraction. You may find a question like this in the non-calculator paper.

Example 4: Work out the gradient of the following lines on this co-ordinate grid.

1
Gradient $=\frac{V D}{H D}$
Gradient $=\frac{-4}{2}$
Gradient $=-\frac{2}{1}=-2$
2
Gradient $=\frac{V D}{H D}$
Gradient $=\frac{3}{6}$
Gradient $=\frac{1}{2}$

