Paper 2

Marking instructions for each question

Question	Generic scheme	Illustrative scheme	Max mark
1. (a)	• ¹ calculate gradient of AB	• $^{1} m_{AB} = -3$	3
	• ² use property of perpendicular lines	• ² $m_{alt} = \frac{1}{3}$	
	• ³ determine equation of altitude	• $^{3} x - 3y = 4$	
1. (b)	• ⁴ calculate midpoint of AC	• ⁴ (4,5)	3
	• ⁵ calculate gradient of median	• ⁵ $m_{\rm BM} = 2$	
	• ⁶ determine equation of median	• $y = 2x - 3$	
1. (c)	• ⁷ find x or y coordinate	• $^{7} x = 1 \text{ or } y = -1$	2
	• ⁸ find remaining coordinate	• ⁸ $y = -1$ or $x = 1$	
2.	 ¹ write in integrable form ² integrate one term 	•1 $4x + x^{-2}$ •2 $eg \frac{4}{2}x^2 +$	4
	• ³ integrate other term	• $\frac{x^{-1}}{-1}$	
	 ⁴ complete integration and simplify 	•4 $2x^2 - x^{-1} + c$	
3.	• ¹ value of a	• ¹ 1	3
	• ² value of b	• ² -2	
	• ³ calculate k	• ³ –1	

Q	uestion	Generic scheme	Illustrative scheme	Max mark
4.	(a)	• ¹ state components of $\overrightarrow{\text{DB}}$	$\bullet^1 \begin{pmatrix} 2\\ 2\\ -6 \end{pmatrix}$	3
		• ² state coordinates of M	• ² (2,0,0) stated or implied by • ³	
		• ³ state components of \overrightarrow{DM}		
4.	(b)			5
		• ⁴ evaluate $\overrightarrow{DB}.\overrightarrow{DM}$	• ⁴ 32	
		● ⁵ evaluate DB	● ⁵ √44	
		● ⁶ evaluate DM	● ⁶ √40	
		• ⁷ use scalar product	• ⁷ cos BDM = $\frac{32}{\sqrt{44}\sqrt{40}}$	
		• ⁸ calculate angle	• ⁸ 40·3° or 0.703 rads	

Question	Generic scheme	Illustrative scheme	Max mark
5.	 ¹ know to integrate and interpret limits 	$\bullet^1 \int_{-3}^0 \dots dx$	5
	$ullet^2$ use 'upper – lower'	• ² $\int_{-3}^{0} (x^3 + 3x^2 + 2x + 3) - (2x + 3) dx$	
	• ³ integrate	$e^{3} \frac{1}{4}x^{4} + x^{3}$	
	• ⁴ substitute limits	• $^{4} 0 - \left(\frac{1}{4}(-3)^{4} + (-3)^{3}\right)$	
	● ⁵ evaluate area	• ⁵ $\frac{27}{4}$ units ²	

C	uestion	Generic scheme	Illustrative scheme	Max mark
6.	(a)	Method 1	Method 1	3
		• ¹ identify common factor	•1 $3(x^2 + 8x$ stated or implied by •2	
		• ² complete the square	• ² $3(x+4)^2$	
		• ³ process for c and write in required form	• ³ $3(x+4)^2+2$	
		Method 2	Method 2	3
		•1 expand completed square form	• ¹ $ax^2 + 2abx + ab^2 + c$	
		• ² equate coefficients	• ² $a = 3$, $2ab = 24$, $ab^2 + c = 50$	
		• ³ process for <i>b</i> and <i>c</i> and write in required form	• ³ $3(x+4)^2+2$	
6.	(b)	• ⁴ differentiate two terms	• $3x^2 + 24x$	2
		• ⁵ complete differentiation	• ⁵ +50	
6.	(C)	Method 1	Method 1	2
		• ⁶ link with (a) and identify sign of $(x+4)^2$	• $f'(x) = 3(x+4)^2 + 2$ and $(x+4)^2 \ge 0 \forall x$	
		• ⁷ communicate reason	• ⁷ $\therefore 3(x+4)^2 + 2 > 0 \Rightarrow$ always strictly increasing	
		Method 2	Method 2	2
		• ⁶ identify minimum value of $f'(x)$	• ⁶ eg minimum value = 2 or annotated sketch	
		• ⁷ communicate reason	• ⁷ $2 > 0 :: (f'(x) > 0) \Rightarrow$ always strictly increasing	

Q	uestion	Generic scheme	Illustrative scheme	Max mark
7.	(a)	 ¹ evidence of reflecting in x-axis ² vertical translation of 2 units identifiable from graph 	 I reflection of graph in x-axis graph moves parallel to y-axis by 2 units upwards y y y z x 	2
7.	(b)	 ³ identify roots ⁴ interpret point of inflexion ⁵ complete cubic curve 	 •³ 0 and 2 only •⁴ turning point at (2,0) •⁵ cubic passing through origin with negative gradient 	3

Question	Generic scheme	Illustrative scheme	Max mark
8. (a)	 ¹ use compound angle formula 	• $k \cos x \cos a - k \sin x \sin a$ stated explicitly	4
	• ² compare coefficients	• ² $k \cos a = 5, k \sin a = 2$ stated explicitly	
	• ³ process for k	• ³ $k = \sqrt{29}$	
	• ⁴ process for <i>a</i> and express in required form	• ⁴ $\sqrt{29}\cos(x+0.38)$	
8. (b)	 ⁵ equate to 12 and simplify constant terms 	• $5 \cos x - 2\sin x = 2$ or $5\cos x - 2\sin x - 2 = 0$	4
	 ⁶ use result of part (a) and rearrange 	• ⁶ $\cos(x+0.3805)=\frac{2}{\sqrt{29}}$	
	• ⁷ solve for $x + a$	• ⁷ • ⁸ • ⁷ 1·1902, 5·0928	
	• ⁸ solve for x	• ⁸ 0·8097, 4·712	

Question	Generic scheme	Illustrative scheme	Max mark
9. (a)	 •¹ equate volume to 100 •² obtain an expression for <i>h</i> •³ demonstrate result 	•1 $V = \pi r^2 h = 100$ •2 $h = \frac{100}{\pi r^2}$ •3 $A = \pi r^2 + 2\pi r^2 + 2\pi r \times \frac{100}{\pi r^2}$ leading to $A = \frac{200}{r} + 3\pi r^2$	3
9. (b)	 •⁴ start to differentiate •⁵ complete differentiation •⁶ set derivative to zero •⁷ obtain <i>r</i> •⁸ verify nature of stationary point •⁹ interpret and communicate result 	•4 $A'(r) = 6\pi r$ •5 $A'(r) = 6\pi r - \frac{200}{r^2}$ •6 $6\pi r - \frac{200}{r^2} = 0$ •7 $r = \sqrt[3]{\frac{100}{3\pi}} (\approx 2 \cdot 20)$ metres •8 table of signs for a derivative when $r = 2 \cdot 1974$ •9 minimum when $r \approx 2 \cdot 20$ (m) or •8 $A''(r) = 6\pi + \frac{400}{r^3}$ •9 $A''(2 \cdot 1974) > 0$: minimum when $r \approx 2 \cdot 20$ (m)	6

Question	Generic scheme	Illustrative scheme	Max mark
10.	• ¹ start to integrate	$\bullet^1 - \frac{1}{4} \cos \dots$	6
	• ² complete integration	$e^2 - \frac{1}{4} \cos\left(4x - \frac{\pi}{2}\right)$	
	• ³ process limits	$\bullet^3 - \frac{1}{4}\cos\left(4a - \frac{\pi}{2}\right) + \frac{1}{4}\cos\left(\frac{4\pi}{8} - \frac{\pi}{2}\right)$	
	• ⁴ simplify numeric term and equate to $\frac{1}{2}$		
	$ullet^5$ start to solve equation	• ⁵ $\cos\left(4a-\frac{\pi}{2}\right)=-1$	
	• ⁶ solve for a	• ⁶ $a = \frac{3\pi}{8}$	
11.	Method 1	Method 1	3
	• ¹ substitute for $\sin 2x$	•1 $\frac{2\sin x \cos x}{2\cos x} - \sin x \cos^2 x$ stated explicitly as above or in a simplified form of the above	
	• ² simplify and factorise	• ² $\sin x (1 - \cos^2 x)$	
	• ³ substitute for $1 - \cos^2 x$ and simplify	• ³ $\sin x \times \sin^2 x$ leading to $\sin^3 x$	
	Method 2	Method 2	3
	• ¹ substitute for $\sin 2x$	•1 $\frac{2\sin x \cos x}{2\cos x} - \sin x \cos^2 x$ stated explicitly as above or in a simplified form of the above	
	• ² simplify and substitute for $\cos^2 x$	• ² $\sin x - \sin x (1 - \sin^2 x)$	
	• ³ expand and simplify	• ³ $\sin x - \sin x + \sin^3 x$ leading to $\sin^3 x$	

Question	Generic scheme	Illustrative scheme	Max mark
12. (a)	Method 1	Method 1	3
	• ¹ calculate m_{AB}	• $eg m_{AB} = \frac{3}{9} = \frac{1}{3}$	
	• ² calculate m_{BC}	• ² eg $m_{\rm BC} = \frac{5}{15} = \frac{1}{3}$	
	• ³ interpret result and state conclusion	• ³ \Rightarrow AB and BC are parallel (common direction), B is a common point, hence A, B and C are collinear.	
	Method 2	Method 2	3
	• ¹ calculate an appropriate vector, eg \overline{AB}	•1 eg $\overline{AB} = \begin{pmatrix} 9 \\ 3 \end{pmatrix}$	
	• ² calculate a second vector, eg \overrightarrow{BC} and compare	• ² eg $\overrightarrow{BC} = \begin{pmatrix} 15\\5 \end{pmatrix}$ \therefore $\overrightarrow{AB} = \frac{3}{5}\overrightarrow{BC}$	
	• ³ interpret result and state conclusion	 •³ ⇒ AB and BC are parallel (common direction), B is a common point, hence A, B and C are collinear. 	
	Method 3	Method 3	3
	• ¹ calculate m_{AB}	•1 $m_{AB} = \frac{3}{9} = \frac{1}{3}$	
	• ² find equation of line and substitute point	• ² eg, $y-1=\frac{1}{3}(x-2)$ leading to	
		$6-1=\frac{1}{3}(17-2)$	
	• ³ communication	• ³ since C lies on line A, B and C are collinear	
12. (b)	• ⁴ find radius	• ⁴ 6√10	4
	• ⁵ determine an appropriate ratio	• ⁵ eg 2:3 or $\frac{2}{5}$ (using B and C)	
		or 3:5 or $\frac{8}{5}$ (using A and C)	
	• ⁶ find centre	•6 (8,3)	
	• ⁷ state equation of circle	• ⁷ $(x-8)^2 + (y-3)^2 = 360$	

Question	Generic scheme	Illustrative scheme	Max mark
13. (a)	• ¹ interpret half-life	• $\frac{1}{2}P_0 = P_0e^{-25k}$ stated or implied by • ²	4
	• ² process equation	• ² $e^{-25k} = \frac{1}{2}$	
	• ³ write in logarithmic form	• $\log_e \frac{1}{2} = -25k$	
	• ⁴ process for k	•4 $k \approx 0.028$	
13. (b)	• ⁵ interpret equation	• $P_t = P_0 e^{-80 \times 0.028}$	3
	• ⁶ process	•6 $P_t \approx 0 \cdot 1065 P_0$	
	• ⁷ state percentage decrease	•7 89%	

[END OF SPECIMEN MARKING INSTRUCTIONS]