Paper 2

Marking instructions for each question

Question	Generic scheme	Illustrative scheme	Max mark
1. (a)	- ${ }^{1}$ calculate gradient of $A B$ - ${ }^{2}$ use property of perpendicular lines - ${ }^{3}$ determine equation of altitude	- ${ }^{1} m_{\mathrm{AB}}=-3$ - $2 m_{a l t}=\frac{1}{3}$ -3 $x-3 y=4$	3
1. (b)	- ${ }^{4}$ calculate midpoint of $A C$ - ${ }^{5}$ calculate gradient of median $\bullet{ }^{6}$ determine equation of median	- ${ }^{4}(4,5)$ - ${ }^{5} m_{\text {BM }}=2$ - ${ }^{6} y=2 x-3$	3
1. (c)	- ${ }^{7}$ find x or y coordinate - ${ }^{8}$ find remaining coordinate	- $7 x=1$ or $y=-1$ - $8 y=-1$ or $x=1$	2
2.	-1 write in integrable form -2 integrate one term -3 integrate other term -4 complete integration and simplify	- $14 x+x^{-2}$ - 2 eg $\frac{4}{2} x^{2}+\ldots$ -3..$\frac{x^{-1}}{-1}$ -4 $2 x^{2}-x^{-1}+c$	4
3.	-1 value of a - ${ }^{2}$ value of b - ${ }^{3}$ calculate k	-1 1 -2 -2 - ${ }^{3}-1$	3

Question	Generic scheme	Illustrative scheme	Max mark
4. (a)	-1 state components of $\overrightarrow{D B}$ \bullet - state coordinates of M - ${ }^{3}$ state components of $\overrightarrow{D M}$	-1 $\left(\begin{array}{r}2 \\ 2 \\ -6\end{array}\right)$ $\bullet^{2}(2,0,0)$ stated or implied by \bullet^{3} - $3\left(\begin{array}{r}0 \\ -2 \\ -6\end{array}\right)$	3
4. (b)	- ${ }^{4}$ evaluate $\overrightarrow{D B} \cdot \overrightarrow{D M}$ - ${ }^{5}$ evaluate $\|\overrightarrow{\mathrm{DB}}\|$ - ${ }^{6}$ evaluate $\|\overrightarrow{\mathrm{DM}}\|$ -7 use scalar product - ${ }^{8}$ calculate angle	- 42 - $\sqrt{44}$ - $6 \sqrt{40}$ -7 $\cos \mathrm{BDM}=\frac{32}{\sqrt{44} \sqrt{40}}$ $\bullet^{8} 40 \cdot 3^{\circ}$ or 0.703 rads	5

Question	Generic scheme	Illustrative scheme	Max mark
5.	- ${ }^{1}$ know to integrate and interpret limits -2 use 'upper - lower' -3 integrate - ${ }^{4}$ substitute limits - ${ }^{5}$ evaluate area	-1 $\int_{-3}^{0} \ldots d x$ - $\int_{-3}^{0}\left(x^{3}+3 x^{2}+2 x+3\right)-(2 x+3) d x$ - $\frac{1}{4} x^{4}+x^{3}$ - ${ }^{4} 0-\left(\frac{1}{4}(-3)^{4}+(-3)^{3}\right)$ -5 $\frac{27}{4}$ units 2	5

Question	Generic scheme	Illustrative scheme	Max mark
6. (a)	Method 1 -1 identify common factor -2 complete the square - ${ }^{3}$ process for c and write in required form	Method 1 -1 $3\left(x^{2}+8 x \ldots \ldots .\right.$. stated or implied by \bullet^{2} - $23(x+4)^{2} \ldots .$. - $3(x+4)^{2}+2$	3
	Method 2 -1 ${ }^{1}$ expand completed square form \bullet - equate coefficients - ${ }^{3}$ process for b and c and write in required form	Method 2 -1 $a x^{2}+2 a b x+a b^{2}+c$ -2 $a=3,2 a b=24, a b^{2}+c=50$ -3 $3(x+4)^{2}+2$	3
6. (b)	- 4 differentiate two terms -5 complete differentiation	-4 $3 x^{2}+24 x \ldots$ - ${ }^{5} . . .+50$	2
6. (c)	Method 1 -6 link with (a) and identify sign of $(x+4)^{2}$ -7 communicate reason	Method 1 - $6 f^{\prime}(x)=3(x+4)^{2}+2$ and $(x+4)^{2} \geq 0 \forall x$ -7 $\therefore 3(x+4)^{2}+2>0 \Rightarrow$ always strictly increasing	2
	Method 2 - ${ }^{6}$ identify minimum value of $f^{\prime}(x)$ -7 communicate reason	Method 2 -6 eg minimum value $=2$ or annotated sketch -7 $2>0 \therefore\left(f^{\prime}(x)>0\right) \Rightarrow$ always strictly increasing	2

Question	Generic scheme	Illustrative scheme	Max mark
7. (a)	- ${ }^{1}$ evidence of reflecting in x-axis \bullet^{2} vertical translation of 2 units identifiable from graph	- ${ }^{1}$ reflection of graph in x-axis -2 graph moves parallel to y-axis by 2 units upwards	2
7. (b)	- ${ }^{3}$ identify roots - ${ }^{4}$ interpret point of inflexion - ${ }^{5}$ complete cubic curve	${ }^{-3} 0$ and 2 only - ${ }^{4}$ turning point at $(2,0)$ ${ }^{-5}$ cubic passing through origin with negative gradient	3

Question	Generic scheme	Illustrative scheme	Max mark
8. (a)	- ${ }^{1}$ use compound angle formula ${ }^{\bullet}{ }^{2}$ compare coefficients - ${ }^{3}$ process for k -4 process for a and express in required form	- ${ }^{1} k \cos x \cos a-k \sin x \sin a$ stated explicitly - ${ }^{2} k \cos a=5, k \sin a=2$ stated explicitly - $k=\sqrt{29}$ - $4 \sqrt{29} \cos (x+0 \cdot 38)$	4
8. (b)	- ${ }^{5}$ equate to 12 and simplify constant terms -6 use result of part (a) and rearrange ${ }^{-7}$ solve for $x+a$ ${ }^{8}{ }^{8}$ solve for x	-5 $5 \cos x-2 \sin x=2$ or $5 \cos x-2 \sin x-2=0$ $\bullet^{6} \cos (x+0 \cdot 3805 \ldots)=\frac{2}{\sqrt{29}}$ \bullet^{7} \bullet^{8} $\bullet \bullet^{7}$ $1 \cdot 1902 \ldots$, $5 \cdot 0928 \ldots$ $\bullet 8$ $0 \cdot 8097 \ldots$, $4 \cdot 712 \ldots$	4

Question	Generic scheme	Illustrative scheme	Max mark
9. (a)	-1 equate volume to 100 - ${ }^{2}$ obtain an expression for h - ${ }^{3}$ demonstrate result	-1 $V=\pi r^{2} h=100$ - $2 h=\frac{100}{\pi r^{2}}$ -3 $A=\pi r^{2}+2 \pi r^{2}+2 \pi r \times \frac{100}{\pi r^{2}}$ leading to $A=\frac{200}{r}+3 \pi r^{2}$	3
9. (b)	- 4 start to differentiate ${ }^{-5}$ complete differentiation -6 set derivative to zero - ${ }^{7}$ obtain r - 8 verify nature of stationary point - 9 interpret and communicate result	- $4 A^{\prime}(r)=6 \pi r \ldots$ -5 $A^{\prime}(r)=6 \pi r-\frac{200}{r^{2}}$ -6 $6 \pi r-\frac{200}{r^{2}}=0$. $7 \quad r=\sqrt[3]{\frac{100}{3 \pi}}(\approx 2 \cdot 20)$ metres -8 table of signs for a derivative when $r=2 \cdot 1974 \ldots$ -9 minimum when $r \approx 2.20(\mathrm{~m})$ or -8 $A^{\prime \prime}(r)=6 \pi+\frac{400}{r^{3}}$ - $A^{\prime \prime}(2 \cdot 1974 \ldots)>0 \therefore$ minimum when $r \approx 2.20(\mathrm{~m})$	6

Question	Generic scheme	Illustrative scheme	Max mark
10.	- 1 start to integrate -2 complete integration - ${ }^{3}$ process limits - ${ }^{4}$ simplify numeric term and equate to $\frac{1}{2}$ $\bullet{ }^{5}$ start to solve equation - ${ }^{6}$ solve for a	- $1-\frac{1}{4} \cos \ldots$ - $2-\frac{1}{4} \cos \left(4 x-\frac{\pi}{2}\right)$ $\bullet^{3}-\frac{1}{4} \cos \left(4 a-\frac{\pi}{2}\right)+\frac{1}{4} \cos \left(\frac{4 \pi}{8}-\frac{\pi}{2}\right)$ - $4-\frac{1}{4} \cos \left(4 a-\frac{\pi}{2}\right)+\frac{1}{4}=\frac{1}{2}$ $\bullet^{5} \cos \left(4 a-\frac{\pi}{2}\right)=-1$ -6 $a=\frac{3 \pi}{8}$	6
11.	Method 1 -1 substitute for $\sin 2 x$ - 2 simplify and factorise - 3 substitute for $1-\cos ^{2} x$ and simplify	Method 1 -1 $\frac{2 \sin x \cos x}{2 \cos x}-\sin x \cos ^{2} x$ stated explicitly as above or in a simplified form of the above - $\quad \sin x\left(1-\cos ^{2} x\right)$ -3 $\sin x \times \sin ^{2} x$ leading to $\sin ^{3} x$	3
	Method 2 -1 substitute for $\sin 2 x$ -2 simplify and substitute for $\cos ^{2} x$ ${ }^{-3}$ expand and simplify	Method 2 -1 $\frac{2 \sin x \cos x}{2 \cos x}-\sin x \cos ^{2} x$ stated explicitly as above or in a simplified form of the above $\bullet 2 \sin x-\sin x\left(1-\sin ^{2} x\right)$ $\bullet \sin x-\sin x+\sin ^{3} x$ leading to $\sin ^{3} x$	3

Question	Generic scheme	Illustrative scheme	Max mark
12. (a)	Method 1 - ${ }^{1}$ calculate $m_{A B}$ - 2 calculate m_{BC} - ${ }^{3}$ interpret result and state conclusion	Method 1 - 1 eg $m_{\mathrm{AB}}=\frac{3}{9}=\frac{1}{3}$ - 2 eg $m_{\mathrm{BC}}=\frac{5}{15}=\frac{1}{3}$ ${ }^{-3} \ldots \Rightarrow A B$ and $B C$ are parallel (common direction), B is a common point, hence A, B and C are collinear.	3
	Method 2 - ${ }^{1}$ calculate an appropriate vector, eg $\overrightarrow{A B}$ -2 calculate a second vector, eg $\overline{B C}$ and compare -3 interpret result and state conclusion	Method 2 -1 eg $\overrightarrow{\mathrm{AB}}=\binom{9}{3}$ \bullet eg $\overrightarrow{\mathrm{BC}}=\binom{15}{5} \therefore \overrightarrow{\mathrm{AB}}=\frac{3}{5} \overrightarrow{\mathrm{BC}}$ ${ }^{\bullet 3} \ldots \Rightarrow A B$ and $B C$ are parallel (common direction), B is a common point, hence A, B and C are collinear.	3
	Method 3 - ${ }^{1}$ calculate $m_{A B}$ -2 find equation of line and substitute point -3 communication	Method 3 -1 $m_{A B}=\frac{3}{9}=\frac{1}{3}$ -2 eg, $y-1=\frac{1}{3}(x-2)$ leading to $6-1=\frac{1}{3}(17-2)$ - 3 since C lies on line A, B and C are collinear	3
12. (b)	- 4 find radius - 5 determine an appropriate ratio -6 find centre -7 state equation of circle	- $4 \quad 6 \sqrt{10}$ - 5 eg $2: 3$ or $\frac{2}{5}$ (using B and C) or $3: 5$ or $\frac{8}{5}$ (using A and C) - $6(8,3)$ -7 $(x-8)^{2}+(y-3)^{2}=360$	4

Question	Generic scheme	Illustrative scheme	Max mark
13. (a)	-1 interpret half-life -2 process equation -3 write in logarithmic form - ${ }^{4}$ process for k	-1 $\frac{1}{2} P_{0}=P_{0} e^{-25 k}$ stated or implied by \bullet^{2} -2 $e^{-25 k}=\frac{1}{2}$ - $\log _{e} \frac{1}{2}=-25 k$ - $k \approx 0.028$	4
13. (b)	-5 interpret equation - 6 process -7 state percentage decrease	${ }^{-5} P_{t}=P_{0} e^{-80 \times 0.028}$ -6 $P_{t} \approx 0.1065 P_{0}$ -7 89\%	3

[END OF SPECIMEN MARKING INSTRUCTIONS]

