Paper 1

Marking instructions for each question

Question	Generic scheme	Illustrative scheme	Max mark
1.	-1 differentiate \bullet^{2} calculate gradient - ${ }^{3}$ find the value of y - ${ }^{4}$ find equation of tangent	-1 $2 x-4$ -2 6 - ${ }^{3} 12$ -4 $y=6 x-18$	4
2.	-1 find the centre $\bullet 2$ calculate the radius -3 state equation of circle	-1 $(-3,4)$ -2 $\sqrt{17}$ - $3(x+3)^{2}+(y-4)^{2}=17$ or equivalent	3
3. (a)	-1 find gradient l_{1} -2 state gradient l_{2}	$\begin{aligned} & \bullet^{1} \frac{1}{\sqrt{3}} \\ & \bullet^{2}-\sqrt{3} \end{aligned}$	2
3. (b)	- ${ }^{3}$ using $m=\tan \theta$ -4 calculating angle	- ${ }^{3} \tan \theta=-\sqrt{3}$ -4 $\theta=\frac{2 \pi}{3}$ or 120°	2
4.	- ${ }^{1}$ complete integration - ${ }^{2}$ substitute limits - ${ }^{3}$ evaluate	$\begin{aligned} & \bullet^{1}-\frac{1}{6} x^{-1} \\ & \text { •2 }\left(-\frac{1}{6 \times 2}\right)-\left(-\frac{1}{6 \times 1}\right) \\ & \text { •3 } \frac{1}{12} \end{aligned}$	3

Question	Generic scheme	Illustrative scheme	Max mark
5.	- ${ }^{1}$ find $\overrightarrow{C D}$ \bullet^{2} find $\overrightarrow{A B}$ - 3 equate scalar product to zero $\bullet{ }^{4}$ calculate value of x	-1 $\left(\begin{array}{c}x-4 \\ -3 \\ -1\end{array}\right)$ -2 $\left(\begin{array}{r}5 \\ -10 \\ -5\end{array}\right)$ -3 $5(x-4)+(-10)(-3)+(-5)(-1)=0$ -4 $x=-3$	4
6.	-1 ${ }^{1}$ substitute into discriminant - ${ }^{2}$ apply condition for no real roots -3 determine zeroes of quadratic expression - ${ }^{4}$ state range with justification	-1 $(p+1)^{2}-4 \times 1 \times 9$ - ${ }^{2} . . .<0$ - ${ }^{3}-7,5$ - $4-7<p<5$ with eg sketch or table of signs	4
7.	- ${ }^{1}$ substitute for y in equation of circle -2 express in standard quadratic form -3 demonstrate tangency ${ }^{4}$ find x-coordinate $\bullet 5$ find y-coordinate	- $1 x^{2}+(3 x-5)^{2}+2 x-4(3 x-5)-5=0$ - $210 x^{2}-40 x+40=0$ - $310(x-2)^{2}=0$ only one solution implies tangency - ${ }^{4} x=2$ - ${ }^{5} y=1$	5

Question	Generic scheme	Illustrative scheme	Max mark
8. (a)	- 1 use appropriate strategy -2 obtain an expression for a and b -3 obtain a second expression for a and b -4 find the value of a or b - 5 find the second value	- ${ }^{1}(1)^{3}-4(1)^{2}+a(1)+b=0$ $\bullet^{2} a+b=3$ -3 $2 a+b=-4$ -4 $a=-7$ or $b=10$ $\bullet 5 \quad b=10$ or $a=-7$	5
8. (b)	- ${ }^{6}$ obtain quadratic factor -7 complete factorisation $\bullet 8$ state solutions	- ${ }^{6}\left(x^{2}-3 x-10\right)$ -7 $(x-1)(x-5)(x+2)$ $\bullet 8=1, x=5, x=-2$	3
9. (a)	-1 interpret information -2 solve to find m	-1 $13=28 m+6$ -2 $m=\frac{1}{4}$	2
9. (b) (i)	${ }^{3}$ state condition	-3 a limit exists as $-1<\frac{1}{4}<1$	1
9. (b) (ii)	-4 know how to calculate limit - ${ }^{5}$ calculate limit	- $4 L=\frac{1}{4} L+6$ - ${ }^{5} L=8$	2

Question	Generic scheme	Illustrative scheme	Max mark
10. (a)	-1 state value	${ }^{1} 2$	1
10. (b)	- ${ }^{1}$ use laws of logarithms -2 link to part (a) -3 use laws of logarithms $\bullet 4$ write in standard quadratic form $\bullet{ }^{5}$ solve for x and identify appropriate solution	- ${ }^{1} \log _{4} x(x-6)$ - $2 \log _{4} x(x-6)=2$ - ${ }^{3} x(x-6)=4^{2}$ - $4 x^{2}-6 x-16=0$ ${ }^{\bullet 5} 8$	5
11.	-1 start to differentiate -2 complete differentiation -3 evaluate derivative	-1 $3 \times 4 \sin ^{2} x \ldots$ -2 $\quad . . \times \cos x$ -3 $\frac{-3 \sqrt{3}}{2}$	3
12.	- ${ }^{1}$ calculate lengths AC and AD -2 select appropriate formula and express in terms of p and q -3 calculate two of $\cos p, \cos q, \sin p, \sin q$ - ${ }^{4}$ calculate other two and substitute into formula - ${ }^{5}$ arrange into required form	- $1 \mathrm{AC}=\sqrt{17}$ and $\mathrm{AD}=5$ stated or implied by • $\bullet^{2} \cos q \cos p+\sin q \sin p$ stated or implied by ${ }^{4}$ $\bullet^{3} \cos p=\frac{4}{\sqrt{17}}, \cos q=\frac{4}{5}$ $\sin p=\frac{1}{\sqrt{17}}, \sin q=\frac{3}{5}$ - $4 \frac{4}{5} \times \frac{4}{\sqrt{17}}+\frac{3}{5} \times \frac{1}{\sqrt{17}}$ - $5 \frac{19}{5 \sqrt{17}} \times \frac{\sqrt{17}}{\sqrt{17}}=\frac{19 \sqrt{17}}{85}$ or $\frac{19}{5 \sqrt{17}}=\frac{19 \sqrt{17}}{5 \times 17}=\frac{19 \sqrt{17}}{85}$	5

Question	Generic scheme	Illustrative scheme	Max mark
13.	- ${ }^{1}$ know to and start to integrate -2 complete integration ${ }^{\bullet}{ }^{3}$ substitute for x and y -4 state expression for y	- 1 eg $y=\frac{4}{2} x^{2} \ldots$ - $2 y=\frac{4}{2} x^{2}-\frac{6}{3} x^{3}+c$ - $9=2(-1)^{2}-2(-1)^{3}+c$ -4 $y=2 x^{2}-2 x^{3}+5$	4
14. (a)	- ${ }^{1}$ use double angle formula - ${ }^{2}$ express as a quadratic in $\cos x^{\circ}$ - ${ }^{3}$ start to solve - ${ }^{4}$ reduce to equations in $\cos x^{\circ}$ only $\bullet{ }^{5}$ process solutions in given domain	Method 1: Using factorisation -1 $2 \cos ^{2} x^{\circ}-1 \ldots$ stated or implied by \bullet^{2} $\left.\begin{array}{ll}\bullet^{2} \quad 2 \cos ^{2} x^{\circ}-3 \cos x^{\circ}+1=0 \\ \bullet \quad\left(2 \cos x^{\circ}-1\right)\left(\cos x^{\circ}-1\right)\end{array}\right\} \begin{aligned} & =0 \text { must } \\ & \text { appear at } \\ & \text { either of } \\ & \text { these lines } \\ & \text { to gain } \bullet^{2}\end{aligned}$ Method 2: Using quadratic formula - $12 \cos ^{2} x^{\circ}-1 \ldots$ stated or implied by \bullet^{2} - $2 \cos ^{2} x^{\circ}-3 \cos x^{\circ}+1=0$ stated explicitly - $\frac{-(-3) \pm \sqrt{(-3)^{2}-4 \times 2 \times 1}}{2 \times 2}$ In both methods: $\bullet^{4} \cos x^{\circ}=\frac{1}{2}$ and $\cos x^{\circ}=1$ ${ }^{-5}$ 0, 60, 300 Candidates who include 360 lose \bullet^{5}. or $\bullet^{4} \cos x=1$ and $x=0$ $\bullet^{5} \cos x^{\circ}=\frac{1}{2}$ and $x=60$ or 300 Candidates who include 360 lose \bullet^{5}.	5
14. (b)	-6 interpret relationship with (a) -7 state valid values	-6 $2 x=0$ and 60 and 300 -7 0, 30, 150, 180, 210 and 330	2

Question	Generic scheme	Illustrative scheme	Max mark
15. (a)	- ${ }^{1}$ interpret notation -2 complete process	-1 $g\left(x^{3}-1\right)$ - $23 x^{3}-2$	2
15. (b)	${ }^{3}$ start to rearrange for x ${ }^{4}$ rearrange - ${ }^{5}$ state expression for $h(x)$	- $3 x^{3}=y+2$ -4 $x=\sqrt[3]{\frac{y+2}{3}}$ - $5 h(x)=\sqrt[3]{\frac{x+2}{3}}$	3

[END OF SPECIMEN MARKING INSTRUCTIONS]

