Paper 1

Marking instructions for each question

Question	Generic scheme	Illustrative scheme	Max mark
1.	• ¹ differentiate	• 1 2x - 4	4
	• ² calculate gradient	• ² 6	
	• ³ find the value of y	• ³ 12	
	• ⁴ find equation of tangent	$\bullet^4 y = 6x - 18$	
2.	• ¹ find the centre	• ¹ (-3,4)	3
	$ullet^2$ calculate the radius	• ² \sqrt{17}	
	\bullet^3 state equation of circle	• $(x+3)^2 + (y-4)^2 = 17 \text{ or}$ equivalent	
3. (a)	• ¹ find gradient l_1	• ¹ $\frac{1}{\sqrt{3}}$	2
	•² state gradient l_2	• ² -\sqrt{3}	
3. (b)	• ³ using $m = \tan \theta$	• ³ $\tan \theta = -\sqrt{3}$	2
	• ⁴ calculating angle	• ⁴ $\theta = \frac{2\pi}{3}$ or 120°	
4.	• ¹ complete integration	• $^{1} -\frac{1}{6}x^{-1}$	3
	• ² substitute limits	$\bullet^2 \left(-\frac{1}{6\times 2}\right) - \left(-\frac{1}{6\times 1}\right)$	
	• ³ evaluate	• ³ $\frac{1}{12}$	

Question	Generic scheme	Illustrative scheme	Max mark
5.	• ¹ find \overrightarrow{CD}	• ¹ $\begin{pmatrix} x-4\\ -3\\ -1 \end{pmatrix}$	4
	• ² find \overrightarrow{AB}		
	• ³ equate scalar product to zero	• ³ $5(x-4)+(-10)(-3)+(-5)(-1)=0$	
	• ⁴ calculate value of x	• $x = -3$	
6.	• ¹ substitute into discriminant	• $(p+1)^2 - 4 \times 1 \times 9$	4
	 ² apply condition for no real roots 	• ² <0	
	• ³ determine zeroes of quadratic expression	• ³ -7, 5	
	• ⁴ state range with justification	• ⁴ $-7 with eg sketch or table of signs$	
7.			5
	•1 substitute for <i>y</i> in equation of circle	$\bullet^{1} x^{2} + (3x-5)^{2} + 2x - 4(3x-5) - 5 = 0$	
	• ² express in standard quadratic form	• ² $10x^2 - 40x + 40 = 0$	
	• ³ demonstrate tangency	• $10(x-2)^2 = 0$ only one solution implies tangency	
	• ⁴ find x-coordinate	• ⁴ $x = 2$	
	• ⁵ find <i>y</i> -coordinate	• ⁵ $y=1$	

Question	Generic scheme	Illustrative scheme	Max mark
8. (a)	• ¹ use appropriate strategy	• 1 $(1)^3 - 4(1)^2 + a(1) + b = 0$	5
	• ² obtain an expression for a and b	• ² $a+b=3$	
	• ³ obtain a second expression for a and b	• ³ $2a+b=-4$	
	• ⁴ find the value of a or b	• ⁴ $a = -7$ or $b = 10$	
	$ullet^5$ find the second value	• ⁵ $b = 10$ or $a = -7$	
8. (b)	• ⁶ obtain quadratic factor	$\bullet^6 \left(x^2 - 3x - 10\right)$	3
	• ⁷ complete factorisation	• ⁷ $(x-1)(x-5)(x+2)$	
	$ullet^8$ state solutions	• ⁸ $x = 1, x = 5, x = -2$	
9. (a)	• ¹ interpret information	• $13 = 28m + 6$	2
	• ² solve to find m	• ² $m = \frac{1}{4}$	
9. (b) (i)	• ³ state condition	• ³ a limit exists as $-1 < \frac{1}{4} < 1$	1
9. (b) (ii)	• ⁴ know how to calculate limit	$\bullet^4 L = \frac{1}{4}L + 6$	2
	• ⁵ calculate limit	• ⁵ $L = 8$	

Question	Generic scheme	Illustrative scheme	Max mark
10. (a)			1
	•1 state value	•1 2	
10. (b)	● ¹ use laws of logarithms	• $\log_4 x(x-6)$	5
	$ullet^2$ link to part (a)	$\bullet^2 \log_4 x(x-6) = 2$	
	$ullet^3$ use laws of logarithms	$\bullet^3 x(x-6) = 4^2$	
	 ⁴ write in standard quadratic form 	• $x^2 - 6x - 16 = 0$	
	• ⁵ solve for <i>x</i> and identify appropriate solution	• ⁵ 8	
11.	• ¹ start to differentiate	•1 $3 \times 4 \sin^2 x$	3
	• ² complete differentiation	• ² × $\cos x$	
	• ³ evaluate derivative	$\bullet^3 \frac{-3\sqrt{3}}{2}$	
12.	$ullet^1$ calculate lengths AC and AD	• ¹ AC = $\sqrt{17}$ and AD = 5 stated or implied by • ³	5
	• ² select appropriate formula and express in terms of p and q	• ² $\cos q \cos p + \sin q \sin p$ stated or implied by • ⁴	
	• ³ calculate two of $\cos p$, $\cos q$, $\sin p$, $\sin q$	• ³ $\cos p = \frac{4}{\sqrt{17}}$, $\cos q = \frac{4}{5}$ $\sin p = \frac{1}{\sqrt{17}}$, $\sin q = \frac{3}{5}$	
	 ⁴ calculate other two and substitute into formula 		
	$ullet^5$ arrange into required form	• $\frac{19}{5\sqrt{17}} \times \frac{\sqrt{17}}{\sqrt{17}} = \frac{19\sqrt{17}}{85}$	
		$\frac{19}{5\sqrt{17}} = \frac{19\sqrt{17}}{5\times17} = \frac{19\sqrt{17}}{85}$	

Question	Generic scheme	Illustrative scheme	Max mark
13.	 ¹ know to and start to integrate 	• 1 eg $y = \frac{4}{2}x^2$	4
	• ² complete integration	• ² $y = \frac{4}{2}x^2 - \frac{6}{3}x^3 + c$	
	• ³ substitute for x and y	• $9 = 2(-1)^2 - 2(-1)^3 + c$	
	• ⁴ state expression for y	• $y = 2x^2 - 2x^3 + 5$	
14. (a)		Method 1: Using factorisation	5
	• ¹ use double angle formula	 ¹ 2 cos² x^o − 1 stated or implied by ●² 	
	 ² express as a quadratic in cos x° ³ start to solve 	• ² $2\cos^2 x^\circ - 3\cos x^\circ + 1 = 0$ • ³ $(2\cos x^\circ - 1)(\cos x^\circ - 1)$ Method 2: Using quadratic formula	
		• $1 2\cos^2 x^\circ - 1$ stated or implied by • ²	
		• ² $2\cos^2 x^\circ - 3\cos x^\circ + 1 = 0$ stated explicitly	
		$\bullet^{3} \frac{-(-3)\pm\sqrt{(-3)^{2}-4\times2\times1}}{2\times2}$	
	e ⁴ roduce to equations in	In both methods:	
	$\cos x^{\circ}$ only	• $\cos x^{\circ} = \frac{1}{2}$ and $\cos x^{\circ} = 1$	
	 ⁵ process solutions in given domain 	 ² •⁵ 0, 60, 300 Candidates who include 360 lose ●⁵. 	
		or • $^{4} \cos x = 1$ and $x = 0$	
		• $5 \cos x^{\circ} = \frac{1}{2}$ and $x = 60$ or 300	
		∠ Candidates who include 360 lose ● ⁵ .	
14. (b)	• ⁶ interpret relationship with (a)	• 6 2x = 0 and 60 and 300	2
	• ⁷ state valid values	• ⁷ 0, 30, 150, 180, 210 and 330	

Question	Generic scheme	Illustrative scheme	Max mark
15. (a)			2
	• ¹ interpret notation	• $g(x^3-1)$	
	• ² complete process	• ² $3x^3 - 2$	
15. (b)	\bullet^3 start to rearrange for x	$a^3 2r^3 = v + 2$	3
		• $3x - y + z$	
	● ⁴ rearrange	•4 $x = \sqrt[3]{\frac{y+2}{3}}$	
	• ⁵ state expression for $h(x)$	• ⁵ $h(x) = \sqrt[3]{\frac{x+2}{3}}$	

[END OF SPECIMEN MARKING INSTRUCTIONS]