EP30/H/01

Mathematics Paper 1
 (Non-Calculator)

Marking Instructions

These Marking Instructions have been provided to show how SQA would mark this Exemplar Question Paper.

> The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is to be used for any other purpose, written permission must be obtained from SQA's Marketing team on permissions@sqa.org.uk.
> Where the publication includes materials from sources other than SQA (ie secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the user's responsibility to obtain the necessary copyright clearance.

General Marking Principles for Higher Mathematics

This information is provided to help you understand the general principles you must apply when marking candidate responses to questions in this Paper. These principles must be read in conjunction with the Detailed Marking Instructions, which identify the key features required in candidate responses.
(a) Marks for each candidate response must always be assigned in line with these General Marking Principles and the Detailed Marking Instructions for this assessment.
(b) Marking should always be positive. This means that, for each candidate response, marks are accumulated for the demonstration of relevant skills, knowledge and understanding: they are not deducted from a maximum on the basis of errors or omissions.
(c) Credit must be assigned in accordance with the specific assessment guidelines.
(d) Candidates may use any mathematically correct method to answer questions except in cases where a particular method is specified or excluded.
(e) Working subsequent to an error must be followed through, with possible credit for the subsequent working, provided that the level of difficulty involved is approximately similar. Where, subsequent to an error, the working is easier, candidates lose the opportunity to gain credit.
(f) Where transcription errors occur, candidates would normally lose the opportunity to gain a processing mark.
(g) Scored-out or erased working which has not been replaced should be marked where still legible. However, if the scored-out or erased working has been replaced, only the work which has not been scored out should be judged.
(h) Unless specifically mentioned in the specific assessment guidelines, do not penalise:

- working subsequent to a correct answer
- correct working in the wrong part of a question
- legitimate variations in solutions
- a repeated error within a question

Definitions of Mathematics-specific command words used in this Paper are:

Determine: obtain an answer from given facts, figures or information;
Expand: multiply out an algebraic expression by making use of the distributive law or a compound trigonometric expression by making use of one of the addition formulae for $\sin (A \pm B)$ or $\cos (A \pm B)$;

Express: use given information to rewrite an expression in a specified form;
Find: obtain an answer showing relevant stages of working;
Hence: use the previous answer to proceed;
Hence, or otherwise: use the previous answer to proceed; however, another method may alternatively be used;

Identify: provide an answer from a number of possibilities;
Justify: show good reason(s) for the conclusion(s) reached;

Show that: use mathematics to prove something, eg that a statement or given value is correct - all steps, including the required conclusion, must be shown;

Sketch: give a general idea of the required shape or relationship and annotate with all relevant points and features;

Solve: obtain the answer(s) using algebraic and/or numerical and/or graphical methods.

Detailed Marking Instructions for each question

Qu	Expected response (Give one mark for each •)	Max mark	Additional guidance (Illustration of evidence for awarding a mark at each •)
1	$y-12=6(x-5)$ -1 know to differentiate - ${ }^{2}$ calculate gradient - ${ }^{3}$ state equation of tangent	3	- ${ }^{1} 2 x-4$ $\bullet^{2} 6$ - $y-12=6(x-5)$
2	$a=1, b=-2$ and $k=-1$ - ${ }^{1}$ interpret a and b - ${ }^{2}$ know to substitute (1, 2) ${ }^{3}$ state the value of k	3	$\bullet^{1} a=1, b=-2$ or $a=-2, b=1$ -2 $2=k \times 1 \times(1+1) \times(1-2)$ $\bullet^{3}-1$
3	$\frac{1}{12}$ $\bullet{ }^{1}$ complete integration - ${ }^{2}$ substitute limits - ${ }^{3}$ evaluate	3	$\begin{aligned} & \cdot \frac{1}{6} x^{-1} \\ & \bullet^{2}\left(-\frac{1}{6 \times 2}\right)-\left(-\frac{1}{6 \times 1}\right) \\ & \bullet^{3} \frac{1}{12} \end{aligned}$
4	Statements B and D are true. - ${ }^{1}$ statements B and D correct -2 calculate maximum value ${ }^{3}$ calculate value of x	3	${ }^{1} B$ and D $\bullet^{2} \max$ is $2-3 \times-1$ or $\begin{aligned} & f\left(\frac{11 \pi}{6}\right)=2-3 \sin \left(\frac{11 \pi}{6}-\frac{\pi}{3}\right)=2-3 \sin \left(\frac{3 \pi}{2}\right)=5 \\ & \bullet^{3} x-\frac{\pi}{3}=\frac{3 \pi}{2} \Rightarrow x=\frac{3 \pi}{2}+\frac{\pi}{3} \Rightarrow x=\frac{11 \pi}{6} \end{aligned}$

6	$\sqrt{\frac{5}{2}}$	2	
	${ }^{\text {- }}{ }^{0}$ identify appropriate points - ${ }^{11}$ calculate distance		- ${ }^{10}(1,3)$ and $\left(-\frac{1}{2}, \frac{5}{2}\right)$ - $11 \sqrt{\frac{5}{2}}$ accept $\frac{\sqrt{10}}{2}$ or $\sqrt{2 \cdot 5}$
Notes	6 \bullet^{10} and \bullet^{11} are only available for considering the distance between the midpoint of PQ and the candidate's answer from (c) or for considering the perpendicular distance from P or Q to l_{2}. 7 At least one coordinate at \bullet^{10} stage must be a fraction for \bullet^{11} to be available. 8\quad There should only be one calculation of a distance to gain $\bullet^{11 .}$		
7 (a)	- ${ }^{1}$ know to use double angle formula \bullet^{2} express as a quadratic in $\cos x^{\circ}$ - ${ }^{3}$ start to solve - ${ }^{4}$ reduce to equations in $\cos x^{\circ}$ only ${ }^{-5}$ process solutions in given domain	5	Method 1: Using factorisation - ${ }^{1} 2 \cos ^{2} x^{\circ}-1 \ldots$ stated or implied by \bullet^{2} $\left.\bullet^{2} \quad 2 \cos ^{2} x^{\circ}-3 \cos x^{\circ}+1=0\right\}$ $=0$ must appear at $\bullet^{3}\left(2 \cos x^{\circ}-1\right)\left(\cos x^{\circ}-1\right)$ either of these lines to gain \bullet^{2} Method 2: Using quadratic formula - ${ }^{1} 2 \cos ^{2} x^{\circ}-1 \ldots$ stated or implied by \bullet^{2} - $2 \cos ^{2} x^{\circ}-3 \cos x^{\circ}+1=0$ stated explicitly - $\frac{-(-3) \pm \sqrt{(-3)^{2}-4 \times 2 \times 1}}{2 \times 2}$ In both methods: $\bullet^{4} \cos x^{\circ}=\frac{1}{2}$ and $\cos x^{\circ}=1$ $\bullet^{5} 0,60,300$ Candidates who include 360 lose \bullet^{5}. or $0^{4} \cos x=1$ and $x=0$ \bullet - $\cos x^{\circ}=\frac{1}{2}$ and $x=60$ or 300 Candidates who include 360 lose \bullet^{5}.
Notes	$-{ }^{1}$ is not available for simply stating that $\cos 2 \mathrm{~A}=2 \cos ^{2} \mathrm{~A}-1$ with no further working. In the event of $\cos ^{2} x-\sin ^{2} x$ or $1-2 \sin ^{2} x$ being substituted for $\cos 2 x, \bullet^{1}$ cannot		

Notes	$\left.\begin{array}{l}1 \begin{array}{ll}\text { All graphs must include both the } x \text { and } y \text { axes (labelled or unlabelled), however } \\ \text { the origin need not be labelled. }\end{array} \\ 2\end{array} \begin{array}{l}\text { No marks are available unless a graph is attempted. } \\ 3\end{array} \begin{array}{l}\text { No marks are available to a candidate who makes several attempts at a graph on } \\ \text { the same diagram, unless it is clear which is the final graph. }\end{array}\right]$A linear graph gains no marks in both (a) and (b). 5For \bullet^{3} "transformed" means a reflection followed by a translation. 6 7\bullet^{1} and \bullet^{2} apply to the entire curve.		
8 (b)	 - ${ }^{4}$ identify roots - ${ }^{5}$ interpret point of inflection - ${ }^{6}$ complete cubic curve	${ }^{4} 0$ and 2 only - ${ }^{5}$ turning point at $(2,0)$ - ${ }^{6}$ cubic passing through origin with negative gradient	
9 (a)	$k=2$ and $a=\frac{\pi}{3}$ - ${ }^{1}$ use appropriate compound angle formula -2 compare coefficients ${ }^{3}{ }^{3}$ process k $-{ }^{4}$ process a	4	
			${ }^{1}{ }^{1} k \cos \mathrm{~A} \cos \mathrm{~B}-k \sin \mathrm{~A} \sin \mathrm{~B}$ stated explicitly $\bullet^{2} k \cos a=1$ and $k \sin a=\sqrt{3}$ stated explicitly - ${ }^{3} 2$ (do not accept $\sqrt{4}$) $\bullet 4 \frac{\pi}{3}$ but must be consistent with \bullet^{2}
Notes	1 Treat $k \cos \mathrm{~A} \cos \mathrm{~B}-\sin \mathrm{A} \sin \mathrm{B}$ as bad form only if the equations at the \bullet^{2} stage both contain k. 2 $2 \cos \mathrm{~A} \cos \mathrm{~B}-2 \sin \mathrm{~A} \sin \mathrm{~B}$ or $2(\cos \mathrm{~A} \cos \mathrm{~B}-\sin \mathrm{A} \sin \mathrm{B})$ is acceptable for \bullet^{1} and \bullet^{3}. 3 Accept $k \cos a=1$ and $-k \sin a=-\sqrt{3}$ for \bullet^{2}. 4 \bullet^{2} is not available for $k \cos 4 x=1$ and $k \sin 4 x=\sqrt{3}$, however, \bullet^{4} is still available. 6 \bullet^{4} is only available for a single value of a. Candidates who work in degrees and do not convert to radian measure in (a) do not gain \bullet^{4}.		

		$7 \quad$ Candidates may use any form of the wave equation for \bullet^{1}, \bullet^{2} and \bullet^{3}, however, \bullet^{4} is only available if the value of a is interpreted for the form $k \cos (4 x+a)$.		
9	(b)	$\left(\frac{\pi}{24}, 0\right)\left(\frac{7 \pi}{24}, 0\right)$	3	
		$\cdot{ }^{5}$ strategy for finding roots - ${ }^{6}$ start to solve for multiple angles ${ }^{\text {7 }}$ state both roots in given domain		- ${ }^{5} 2 \cos \left(4 x+\frac{\pi}{3}\right)=0$ or $\sqrt{3} \sin 4 x=\cos 4 x$ - ${ }^{6} 4 x=\left(\frac{\pi}{2}-\frac{\pi}{3}\right),\left(\frac{3 \pi}{2}-\frac{\pi}{3}\right) \ldots$ - $7 \frac{\pi}{24}, \frac{7 \pi}{24}$
Notes		$8 \quad$ Candidates should only be penalised once for leaving their answer in degrees in (a) and (b). 9 If the expression used in (b) is not consistent with (a) then only \bullet^{6} and \bullet^{7} are available. 10 Correct roots without working cannot gain \bullet^{6} but will gain \bullet^{7}. 11 Candidates should only be penalised once for not simplifying $\sqrt{4}$ in (a) and (b).		
10		$y=\frac{3}{2} \sin 2 x+\frac{\sqrt{3}}{4}$	4	
		- ${ }^{1}$ know to integrate \bullet^{2} substitute $\left(\frac{7 \pi}{6}, \sqrt{3}\right)$ - ${ }^{3}$ use exact values ${ }^{4}$ express y in terms of x		- $\frac{3}{2} \sin 2 x+\ldots$ -2 $\sqrt{3}=\frac{3}{2} \sin \left(2 \times \frac{7 \pi}{6}\right)+c$ - $\sqrt{3}=\frac{3}{2} \times\left(\frac{\sqrt{3}}{2}\right)+c$ - $4 y=\frac{3}{2} \sin 2 x+\frac{\sqrt{3}}{4}$
11	(a)	$3\left(x^{3}-1\right)+1$	2	
		- ${ }^{1}$ interpret notation - ${ }^{2}$ complete process		$\begin{aligned} & \bullet^{1} g\left(x^{3}-1\right) \\ & \bullet^{2} 3\left(x^{3}-1\right)+1 \end{aligned}$

11	(b)	$h(x)=\sqrt[3]{\frac{x+2}{3}}$	3	
		\bullet^{3} start to rearrange for $x=$		- $3 x^{3}=y+2$
		- ${ }^{4}$ rearrange		$\bullet^{4} x=\sqrt[3]{\frac{y+2}{3}}$
		- ${ }^{5}$ write in functional form: $h(x)=\text { or } y=$		${ }^{5} h(x)=\sqrt[3]{\frac{x+2}{3}}$

[END OF EXEMPLAR MARKING INSTRUCTIONS]

