Higher Maths 2006

Paper 2 Solutions

1. (a) $m_{P S}=\frac{6-0}{4-2}$

$$
\begin{aligned}
& m_{P S}=\frac{6}{2} \\
& m_{P S}=3
\end{aligned}
$$

For perpendicular lines,

$$
m_{1} \cdot m_{2}=-1 \Rightarrow m_{Q S}=-\frac{1}{3}
$$

Equation of QS is $x+3 y=22$
(b) QS crosses x-axis when $y=0$,

$$
\left.\left.\begin{array}{ll}
\Rightarrow & x=22 \\
& \mathrm{Q}(22,0)
\end{array}\right] \begin{array}{rl}
\Rightarrow & \mathrm{PQ}=22-2 \\
& =20 \text { units }
\end{array}\right\}
$$

2. $k x^{2}+k x+6=0$

For equal roots, $b^{2}-4 a c=0$

$$
a=k \quad b=k \quad c=6
$$

$(k)^{2}-4(k)(6)=0$

$$
k^{2}-24 k=0
$$

$$
k(k-24)=0
$$

$$
\Rightarrow \quad k=0,24
$$

For equal roots $k=24$ as $k \neq 0$.

$$
\begin{aligned}
y-6 & =-\frac{1}{3}(x-4) \\
3 y-18 & =-x+4
\end{aligned}
$$

$$
x+3 y=22
$$

3. (a) $y=x^{2}-14 x+53$

$$
\frac{d y}{d x}=2 x-14
$$

when $x=8, \quad m=2(8)-14$

$$
m=2
$$

$$
\begin{aligned}
y-5 & =2(x-8) \\
y-5 & =2 x-16 \\
y & =2 x-11
\end{aligned}
$$

(b) For points of intersection, $y=y$:

$$
\left.\begin{array}{rlrl}
2 x-11 & =-x^{2}+10 x-27 & & \\
x^{2}-8 x+16 & =0 & & \text { or check discriminant: } \\
(x-4)(x-4) & =0 & & b^{2}-4 a c
\end{array}\right)=(-8)^{2}-4(1)(16)
$$

when $x=4, \quad y=2(4)-11$

$$
y=-3
$$

$$
\Rightarrow \quad \mathrm{Q}(4,-3)
$$

4.

$(x-3)^{2}+(y-4)^{2}=25$
C $(3,4)$

$$
\begin{aligned}
& x^{2}+y^{2}-k x-8 y-2 k=0 \\
\Rightarrow \quad & k=6
\end{aligned}
$$

$$
\begin{aligned}
& x^{2}+y^{2}-6 x-8 y-12=0 \\
& r=\sqrt{9+16-(-12)} \\
& r=\sqrt{37}
\end{aligned}
$$

The larger circle has radius $\sqrt{37}$.
5. $\frac{d y}{d x}=4 x-6 x^{2} \quad(-1,9)$

$$
\begin{array}{rlrl}
y & =\int\left(4 x-6 x^{2}\right) d x & & \text { when } x=-1, y=9 \\
y & =\frac{4 x^{2}}{2}-\frac{6 x^{3}}{3}+C & \Rightarrow & 9=2(-1)^{2}-2(-1)^{3}+C \\
y=2 x^{2}-2 x^{3}+C & 9=2-2+C \\
& 9=4+C \\
\Rightarrow & y=2 x^{2}-2 x^{3}+5 & 5 & =C
\end{array}
$$

6. (a) $\quad P(-1,2,-1) \quad Q(3,2,-4)$

$$
\overrightarrow{P Q}=\left(\begin{array}{c}
4 \\
0 \\
-3
\end{array}\right)
$$

(b) $\quad|\overrightarrow{P Q}|=\sqrt{(4)^{2}+(0)^{2}+(-3)^{2}}$

$$
=\sqrt{16+9}
$$

$$
=\sqrt{25}
$$

$$
=5
$$

(c) $|\overrightarrow{P Q}|=5 \quad \Rightarrow \quad \frac{1}{5}|\overrightarrow{P Q}|=1 \quad$ (unit vector)
$\Rightarrow \quad \frac{1}{5}\left(\begin{array}{c}4 \\ 0 \\ -3\end{array}\right)=\left(\begin{array}{c}\frac{4}{5} \\ 0 \\ -\frac{3}{5}\end{array}\right)$ is a unit vector parallel to $\overrightarrow{P Q}$.
7. (a) (b)

8. (a)

(i) $\sin a^{\circ}=\frac{1}{\sqrt{5}}$
(ii) $\quad \cos a^{\circ}=\frac{2}{\sqrt{5}}$

$$
\begin{aligned}
\sin 2 a^{\circ} & =2 \sin a^{\circ} \cos a^{\circ} \\
& =2 \cdot \frac{1}{\sqrt{5}} \cdot \frac{2}{\sqrt{5}} \\
& =\frac{4}{5}
\end{aligned}
$$

(b) $\sin 3 a^{\circ}=\sin (2 a+a)^{\circ}$

$$
=\sin 2 a^{\circ} \cos a^{\circ}+\cos 2 a^{\circ} \sin a^{\circ}
$$

$$
=\frac{4}{5} \cdot \frac{2}{\sqrt{5}}+\frac{3}{5} \cdot \frac{1}{\sqrt{5}}
$$

$$
=\frac{8}{5 \sqrt{5}}+\frac{3}{5 \sqrt{5}}
$$

$$
=\frac{11}{5 \sqrt{5}}
$$

$$
\begin{aligned}
\cos 2 a^{\circ} & =1-2 \sin ^{2} a^{\circ} \\
& =1-2\left(\frac{1}{\sqrt{5}}\right)^{2} \\
& =1-2\left(\frac{1}{5}\right) \\
& =1-\frac{2}{5} \\
& =\frac{3}{5}
\end{aligned}
$$

9. $y=\frac{1}{x^{3}}-\cos 2 x$

$$
\begin{aligned}
\frac{d y}{d x} & =-3 x^{-4}-(-\sin 2 x) \cdot 2 \\
& =\frac{-3}{x^{4}}+2 \sin 2 x \\
& =2 \sin 2 x-\frac{3}{x^{4}}
\end{aligned}
$$

10. (a)

$$
\begin{aligned}
& k \cos a=7 \quad k=\sqrt{(7)^{2}+(24)^{2}} \\
& \tan a=\frac{k \sin a}{k \cos a} \\
& k \sin a=24 \quad k=\sqrt{49+576} \\
& k=\sqrt{625} \quad \text { (acute angle) } a=1.29 \text { radians * } \\
& k=25 \\
& \text { * Working in degrees then } \\
& \text { converting to radians gives: } \\
& \tan a^{\circ}=\frac{24}{7} \\
& a=73.7^{\circ} \\
& \Rightarrow \quad a=73.7 \cdot \frac{\pi}{180} \text { radians } \\
& a=1.29 \text { radians } \\
& \text { (b) } \frac{d y}{d x}=25 \cos (x-1.29) \\
& \Rightarrow 25 \cos (x-1.29)=1 \\
& \cos (x-1.29)=\frac{1}{25} \\
& x-1.29=\cos ^{-1}\left(\frac{1}{25}\right) \\
& x-1.29=1.53 \\
& x=2.82 \text { radians }
\end{aligned}
$$

Using Radian mode:
11.

$$
\begin{aligned}
A(t) & =A_{o} e^{-0.000124 t} \\
0.88 & =1 \cdot e^{-0.000124 t} \\
\log _{e} 0.88 & =\log _{e} e^{-0.000124 t} \\
\log _{e} 0.88 & =-0.000124 t \log _{e} e \quad\left(\log _{e} e=1\right) \\
\log _{e} 0.88 & =-0.000124 t \\
t & =\frac{\log _{e} 0.88}{-0.000124} \\
t & =1031 \text { years (to the nearest year) }
\end{aligned}
$$

\Rightarrow The claim is true.
12. (a) (i) $P S=6-\mathrm{x}$

$$
R S=12-\frac{8}{x}
$$

(ii) $A=P S \cdot R S$

$$
\begin{aligned}
& A=(6-x)\left(12-\frac{8}{x}\right) \\
& A=72-\frac{48}{x}-12 x+\frac{8 x}{x} \\
& A=72-\frac{48}{x}-12 x+8 \\
& A=80-12 x-\frac{48}{x}
\end{aligned}
$$

Proved
(b) P.T.O.
(b) $\quad A=80-12 x-48 x^{-1}$

$$
\begin{aligned}
& A^{\prime}=-12+48 x^{-2} \\
& A^{\prime}=\frac{48}{x^{2}}-12
\end{aligned}
$$

For stationary points $A^{\prime}=0$

$$
\begin{aligned}
& \Rightarrow \quad \frac{48}{x^{2}}-12=0 \\
& 48-12 x^{2}=0 \\
& 4-x^{2}=0 \\
& (2+x)(2-x)=0 \\
& \Rightarrow \quad x=-2,2 \\
& x=2 \text { as } x>0 \\
& \text { when } x=2 \text {, } \\
& A=80-12(2)-\frac{48}{(2)} \\
& A=80-24-24 \\
& A=32
\end{aligned}
$$

x	\rightarrow	2	\rightarrow
A^{\prime}	+	0	-
Shape	$/$	-	\backslash

\Rightarrow Maximum turning point at $(2,32)$

$$
\begin{aligned}
A^{\prime}(1) & =\frac{48}{(1)^{2}}-12 \\
& =32 \\
A^{\prime}(3) & =\frac{48}{(3)^{2}}-12 \\
& =\frac{48}{9}-\frac{108}{9} \\
& =-\frac{60}{9}
\end{aligned}
$$

Check endpoints:
when $x=1$;

$$
\begin{aligned}
& A=80-12(1)-\frac{48}{(1)} \\
& A=80-12-48 \\
& A=20
\end{aligned}
$$

\Rightarrow Maximum Area of 32 units 2 when $x=2$
Minimum Area of 20 units 2 when $x=1,4$
when $x=4$;

$$
\begin{aligned}
& A=80-12(4)-\frac{48}{(4)} \\
& A=80-48-12 \\
& A=20
\end{aligned}
$$

