Perth Academy

Mathematics

Higher

2006

Paper 1

Non-Calculator

FORMULAE LIST

Circle:

The equation $x^2 + y^2 + 2gx + 2fy + c = 0$ represents a circle centre (-g, -f) and radius $\sqrt{g^2 + f^2 - c}$. The equation $(x - a)^2 + (y - b)^2 = r^2$ represents a circle centre (a, b) and radius r.

Scalar Product:

 $a.b = |a| |b| \cos \theta$, where θ is the angle between a and b

or
$$\mathbf{a}.\mathbf{b} = a_1b_1 + a_2b_2 + a_3b_3$$
 where $\mathbf{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$ and $\mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$.

Trigonometric formulae:

$$\sin (A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos (A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\sin 2A = 2\sin A \cos A$$

$$\cos 2A = \cos^2 A - \sin^2 A$$

$$= 2\cos^2 A - 1$$

$$= 1 - 2\sin^2 A$$

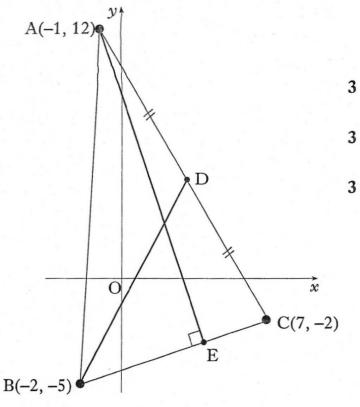
Table of standard derivatives:

f(x)	f'(x)
$\sin ax$	$a\cos ax$
$\cos ax$	$-a\sin ax$

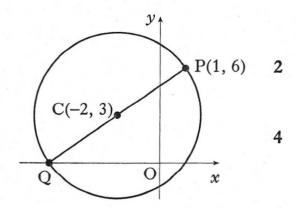
Table of standard integrals:

f(x)	$\int f(x) dx$
sin ax	$-\frac{1}{a}\cos ax + C$
cos ax	$\frac{1}{a}\sin ax + C$

- 1. Triangle ABC has vertices A(-1, 12), B(-2, -5) and C(7, -2).
 - (a) Find the equation of the median BD.
 - (b) Find the equation of the altitude AE.
 - (c) Find the coordinates of the point of intersection of BD and AE.



- 2. A circle has centre C(-2, 3) and passes through P(1, 6).
 - (a) Find the equation of the circle.
 - (b) PQ is a diameter of the circle. Find the equation of the tangent to this circle at Q.



- 3. Two functions f and g are defined by f(x) = 2x + 3 and g(x) = 2x 3, where x is a real number.
 - (a) Find expressions for:
 - (i) f(g(x));
 - (ii) g(f(x)).
 - (b) Determine the least possible value of the product $f(g(x)) \times g(f(x))$.

- 4. A sequence is defined by the recurrence relation $u_{n+1} = 0.8u_n + 12$, $u_0 = 4$.
 - (a) State why this sequence has a limit.
 - (b) Find this limit.

2

1

5. A function f is defined by $f(x) = (2x - 1)^5$.

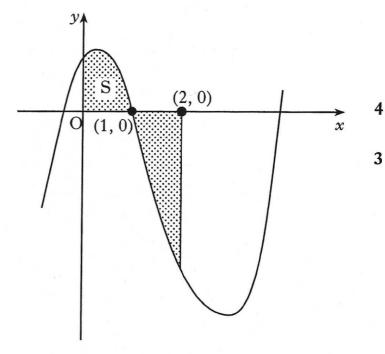
Find the coordinates of the stationary point on the graph with equation y = f(x) and determine its nature.

7

6. The graph shown has equation $y = x^3 - 6x^2 + 4x + 1$.

The total shaded area is bounded by the curve, the x-axis, the y-axis and the line x = 2.

- (a) Calculate the shaded area labelled S.
- (b) Hence find the total shaded area.



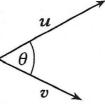
7. Solve the equation $\sin x \circ - \sin 2x \circ = 0$ in the interval $0 \le x \le 360$.

4

- 8. (a) Express $2x^2 + 4x 3$ in the form $a(x + b)^2 + c$.
 - (b) Write down the coordinates of the turning point on the parabola with equation $y = 2x^2 + 4x 3$.
- 1

3

9.
$$u$$
 and v are vectors given by $u = \begin{pmatrix} k^3 \\ 1 \\ k+2 \end{pmatrix}$ and $v = \begin{pmatrix} 1 \\ 3k^2 \\ -1 \end{pmatrix}$, where $k > 0$.



2

5

3

- (a) If $u \cdot v = 1$, show that $k^3 + 3k^2 k 3 = 0$.
- (b) Show that (k + 3) is a factor of $k^3 + 3k^2 k 3$ and hence factorise $k^3 + 3k^2 k 3$ fully.
- (c) Deduce the only possible value of k.
- (d) The angle between u and v is θ . Find the exact value of $\cos \theta$.
- 10. Two variables, x and y, are connected by the law $y = a^x$. The graph of $\log_4 y$ against x is a straight line passing through the origin and the point A(6, 3). Find the value of a.

