Higher Maths 2006

Paper 1 Solutions

1. (a) Midpoint $\mathrm{D}\left(\frac{-1+7}{2}, \frac{12+(-2)}{2}\right)=(3,5)$

Using $\mathrm{B}(-2,-5)$ and $\mathrm{D}(3,5)$;

$$
\text { Gradient } \begin{array}{rlrl}
m & =\frac{5-(-5)}{3-(-2)} & y-b & =m(x-a) \\
m & =\frac{10}{5} & y-(-5) & =2(x-(-2)) \\
m & =2 & y+5 & =2 x+4 \\
y & =2 x-1
\end{array}
$$

Equation of median BD is $y=2 x-1$
(b) Gradient $\quad m_{B C}=\frac{-2-(-5)}{7-(-2)}$

$$
\begin{aligned}
m_{B C} & =\frac{3}{9} \\
m_{B C} & =\frac{1}{3}
\end{aligned}
$$

For perpendicular lines, $m_{1} \cdot m_{2}=-1 \Rightarrow m_{A E}=-3$

$$
\begin{aligned}
y-b & =m(x-a) \\
y-12 & =-3(x-(-1)) \\
y-12 & =-3 x-3 \\
y & =-3 x+9
\end{aligned}
$$

Equation of altitude AE is $y=-3 x+9$
(c) For points of intersection, $y=y$;

$$
\begin{aligned}
2 x-1 & =-3 x+9 & & \text { when } x=2, \\
5 x & =10 & & y=2(2)-1 \\
x & =2 & & y=3
\end{aligned}
$$

Point of intersection of BD and AE at $(2,3)$
2. (a) $\mathrm{C}(-2,3)$

$$
\begin{aligned}
& r^{2}=(1-(-2))^{2}+(6-3)^{2} \\
& r^{2}=(3)^{2}+(3)^{2} \\
& r^{2}=18
\end{aligned}
$$

Equation of circle is $(x+2)^{2}+(y-3)^{2}=18$
(b) \quad At $\mathrm{Q} y=0$,

$$
\left.\begin{array}{rl}
(x+2)^{2}+(0-3)^{2} & =18 \\
x^{2}+4 x+4+9 & =18 \\
x^{2}+4 x-5 & =0 \\
(x+5)(x-1) & =0 \\
\Rightarrow x=-5,1
\end{array}\right)
$$

Gradient $\quad m_{r}=\frac{3-0}{-2-(-5)}$

$$
m_{r}=\frac{3}{3}
$$

$$
m_{r}=1
$$

For perpendicular lines, $m_{1} \cdot m_{2}=-1 \Rightarrow m_{T}=-1$

$$
\begin{aligned}
y-b & =m(x-a) \\
y-0 & =-1(x-(-5)) \\
y & =-x-5
\end{aligned}
$$

Equation of tangent at Q is $x+y+5=0$
3. (a) $f(x)=2 x+3 \quad g(x)=2 x-3$
(i) $f(g(x))=f(2 x-3)$ $=2(2 x-3)+3$

$$
=4 x-6+3
$$

$$
=4 x-3
$$

(ii) $g(f(x))=g(2 x+3)$

$$
=2(2 x+3)-3
$$

$$
=4 x+6-3
$$

$$
=4 x+3
$$

(b) $\quad f(g(x)) \times g(f(x))=(4 x-3)(4 x+3)$

$$
=16 x^{2}-9
$$

$y=16 x^{2}-9$ is symmetrical about the y-axis.
When $x=0, y=-9$.
Minimum value is -9 .
4. (a) For a limit to exist $-1<m<1$.
$m=0.8 \Rightarrow$ this sequence has a limit.
(b) $\quad L=\frac{c}{1-m}$

$$
\begin{aligned}
L & =\frac{12}{1-0.8} \\
L & =\frac{12}{0.2} \\
L & =60
\end{aligned}
$$

5. $f(x)=(2 x-1)^{5}$

$$
\begin{aligned}
& f^{\prime}(x)=5(2 x-1)^{4} \cdot 2 \\
& f^{\prime}(x)=10(2 x-1)^{4}
\end{aligned}
$$

For stationary points $f^{\prime}(x)=0$.

$$
\begin{aligned}
\Rightarrow \quad 10(2 x-1)^{4} & =0 \\
(2 x-1)^{4} & =0 \\
2 x-1 & =0 \\
2 x & =1 \\
x & =\frac{1}{2}
\end{aligned}
$$

\Rightarrow Stationary point at $\left(\frac{1}{2}, 0\right)$

$$
\begin{aligned}
& f^{\prime}(0)=10(2(0)-1)^{4} \\
& f^{\prime}(0)=10(-1)^{4} \\
& f^{\prime}(0)=10
\end{aligned}
$$

$$
f^{\prime}(1)=10(2(1)-1)^{4}
$$

$$
f^{\prime}(1)=10(1)^{4}
$$

$$
f^{\prime}(0)=10
$$

x	\rightarrow	$\frac{1}{2}$	\rightarrow
$f^{\prime}(x)$	+	0	+
Shape	$/$	-	$/$

6. (a) $\int_{0}^{1}\left(x^{3}-6 x^{2}+4 x+1\right) d x$

$$
\begin{aligned}
& =\left[\frac{x^{4}}{4}-\frac{6 x^{3}}{3}+\frac{4 x^{2}}{2}+x\right]_{0}^{1} \\
& =\left[\frac{1}{4} x^{4}-2 x^{3}+2 x^{2}+x\right]_{0}^{1} \\
& =\left(\frac{1}{4}(1)^{4}-2(1)^{3}+2(1)^{2}+(1)\right)-\left(\frac{1}{4}(0)^{4}-2(0)^{3}+2(0)^{2}+(0)\right) \\
& =\frac{1}{4}-2+2+1 \\
& =\frac{5}{4}
\end{aligned}
$$

$$
\Rightarrow \text { Shaded area } S=\frac{5}{4} \text { units }^{2}
$$

(b) $\int_{1}^{2}\left(x^{3}-6 x^{2}+4 x+1\right) d x$

$$
=\left[\frac{1}{4} x^{4}-2 x^{3}+2 x^{2}+x\right]_{1}^{2}
$$

$$
=\left(\frac{1}{4}(2)^{4}-2(2)^{3}+2(2)^{2}+(2)\right)-\left(\frac{1}{4}(1)^{4}-2(1)^{3}+2(1)^{2}+(1)\right)
$$

$$
=\left(\frac{1}{4}(16)-2(8)+2(4)+2\right)-\frac{5}{4}
$$

$$
=4-16+8+2-\frac{5}{4}
$$

$$
=-2-\frac{5}{4}
$$

$$
=-\frac{13}{4}
$$

$$
\Rightarrow \text { Total shaded area }=\frac{5}{4}+\frac{13}{4}
$$

$$
=\frac{18}{4}
$$

$$
=\frac{9}{2} \text { units }^{2}
$$

7.

$$
\begin{aligned}
& \sin x^{\circ}-\sin 2 x^{\circ}=0 \\
& \sin x^{\circ}-2 \sin x^{\circ} \cos x^{\circ}=0 \\
& \sin x^{\circ}\left(1-2 \cos x^{\circ}\right)=0 \\
& \Rightarrow \quad \sin x^{\circ}=0 \quad \text { or } \\
& x^{\circ}=0^{\circ}, 180^{\circ}, 360^{\circ} \quad 1-2 \cos x^{\circ}=0 \\
& \\
& \\
& \\
& \Rightarrow \quad x \in\left\{0^{\circ}, 60^{\circ}, 180^{\circ}, 300^{\circ}, 360^{\circ}\right\}=\frac{1}{2} \\
& x^{\circ}=60^{\circ}, 300^{\circ} \\
& \Rightarrow \quad 0 \leq x \leq 360 .
\end{aligned}
$$

8. (a)

$$
\begin{aligned}
& 2 x^{2}+4 x-3 \\
= & 2\left(x^{2}+2 x\right)-3 \\
= & 2\left((x+1)^{2}-1\right]-3 \\
= & 2(x+1)^{2}-2-3 \\
= & 2(x+1)^{2}-5
\end{aligned}
$$

(b) Minimum turning point at $(-1,-5)$.
9. (a)

$$
\begin{aligned}
\boldsymbol{u} \boldsymbol{v} & =1 \\
\left(k^{3}\right)(1)+(1)\left(3 k^{2}\right)+(k+2)(-1) & =1 \\
k^{3}+3 k^{2}-k-2 & =1 \\
k^{3}+3 k^{2}-k-3 & =0
\end{aligned}
$$

Proved
(b)

-3 \begin{tabular}{ccc|c}

1 \& \begin{tabular}{c}
3

-3

 \&

-1

0

 \&

-3

3
\end{tabular}

\hline 1 \& 0 \& -1 \& 0

\hline
\end{tabular}$\quad \Rightarrow(k+3)$ is a factor

$$
\text { Quotient }=(k-1)^{2}
$$

$$
\begin{aligned}
\Rightarrow \quad(k+3)(k-1)^{2} & =0 \\
(k+3)(k+1)(k-1) & =0
\end{aligned}
$$

(c) $\Rightarrow k=-3,-1,1$

$$
\Rightarrow k=1 \text { as } k>0
$$

(d) When $k=1, \boldsymbol{u}=\left(\begin{array}{l}1 \\ 1 \\ 3\end{array}\right)$ and $\boldsymbol{v}=\left(\begin{array}{c}1 \\ 3 \\ -1\end{array}\right)$

$$
\begin{aligned}
|\boldsymbol{u}| & =\sqrt{1^{2}+1^{2}+3^{2}} & |\boldsymbol{v}| & =\sqrt{1^{2}+3^{2}+(-1)^{2}} \\
& =\sqrt{11} & & =\sqrt{11}
\end{aligned}
$$

$$
\begin{aligned}
& \cos \theta=\frac{(1)(1)+(1)(3)+(3)(-1)}{\sqrt{11} \cdot \sqrt{11}} \\
& \cos \theta=\frac{1}{11}
\end{aligned}
$$

10.

$$
\begin{aligned}
y & =a^{x} \\
\log _{4} y & =\log _{4} a^{x} \\
\log _{4} y & =x \log _{4} a \\
Y & =m x
\end{aligned}
$$

From graph, $\quad m=\frac{3-0}{6-0}$

$$
\begin{aligned}
& m=\frac{3}{6} \\
& m=\frac{1}{2}
\end{aligned}
$$

$$
\Rightarrow \quad \log _{4} a=\frac{1}{2}
$$

$$
a=4^{\frac{1}{2}}
$$

$$
a=2
$$

