Higher Maths 2005

Paper 2 Solutions

1. $\int \frac{4 x^{3}-1}{x^{2}} x$

$$
=\int\left(\frac{4 x^{3}}{x^{2}}-\frac{1}{x^{2}}\right) d x
$$

$$
=\int\left(4 x-x^{-2}\right) d x
$$

$$
=\frac{4 x^{2}}{2}-\frac{x^{-1}}{-1}+c
$$

$$
=2 x^{2}+\frac{1}{x}+c
$$

2. (a) $\sin (p+q)=\sin p \cos q+\cos p \sin q$
(b) $\cos (p+q)=\cos p \cos q-\sin p \sin q$

$$
\begin{aligned}
& =\frac{15}{17} \cdot \frac{4}{5}+\frac{8}{17} \cdot \frac{3}{5} \\
& =\frac{60}{85}+\frac{24}{85} \\
& =\frac{84}{85}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{8}{17} \cdot \frac{4}{5}-\frac{15}{17} \cdot \frac{3}{5} \\
& =\frac{32}{85}-\frac{45}{85} \\
& =-\frac{13}{85}
\end{aligned}
$$

(c) $\tan (p+q)=\frac{\sin (p+q)}{\cos (p+q)}$

$$
\begin{aligned}
& =\frac{\frac{84}{85}}{-\frac{13}{85}} \\
& =\frac{84}{85} \times-\frac{85}{13} \\
& =-\frac{84}{13}
\end{aligned}
$$

3. (a) $m_{\mathrm{AB}}=\frac{\left(y_{2}-y_{1}\right)}{\left(x_{2}-x_{1}\right)}$

$$
\text { midpoint }=(3,2)
$$

$$
\begin{aligned}
& =\frac{(4-0)}{(5-1)} \\
& =\frac{4}{4} \\
& =1
\end{aligned}
$$

$$
\Rightarrow m_{\text {chord }}=-1 \text { as } m_{1} \cdot m_{2}=-1 \text { for } \perp \text { lines }
$$

$$
\begin{aligned}
& y-b=m(x-a) \\
& y-2=-1(x-3) \\
& y-2=-x+3 \\
& x+y=5
\end{aligned}
$$

(b) $\quad m_{\mathrm{T}}=-\frac{1}{3}$

$$
\Rightarrow \quad m_{\mathrm{r}}=3
$$

(c) Perpendicular bisector of AB (answer (a)) and radius CA will intersect at centre, C .

$$
\begin{aligned}
& y-b=m(x-a) \\
& y-0=3(x-1) \\
& y=3 x-3 \\
& \Rightarrow \quad x+(3 x-3)=5 \\
& 4 x=8 \\
& x=2 \\
& \Rightarrow \quad y=3 \\
& \Rightarrow \quad \mathrm{C}(2,3) \\
& r=\sqrt{\left(x_{C}-x_{A}\right)^{2}+\left(y_{C}-y_{A}\right)^{2}} \\
& r=\sqrt{(2-1)^{2}+(3-0)^{2}} \\
& r=\sqrt{(1)^{2}+(3)^{2}} \\
& r=\sqrt{10} \\
& \Rightarrow \text { Equation of circle: }(x-2)^{2}+(y-3)^{2}=10
\end{aligned}
$$

4. (a) $\overrightarrow{T A}=\left(\begin{array}{c}-5 \\ 15 \\ 1\end{array}\right) \quad \overrightarrow{T B}=\left(\begin{array}{c}-40 \\ 15 \\ 2\end{array}\right)$
(b) $|\overrightarrow{T A}|=\sqrt{(-5)^{2}+(15)^{2}+(1)^{2}}$

$$
=\sqrt{251}
$$

$$
|\overrightarrow{T B}|=\sqrt{(-40)^{2}+(15)^{2}+(2)^{2}}
$$

$$
=\sqrt{1829}
$$

$$
\cos A=\frac{\underline{a} \cdot \underline{b}}{|\underline{a}| \underline{b} \mid}
$$

$$
\cos A=\frac{(-5)(-40)+(15)(15)+(1)(2)}{\sqrt{251} \cdot \sqrt{1829}}
$$

$$
\cos A=0.631
$$

$$
A=50.9^{\circ}
$$

5. For points of intersection $y=y$

$$
\begin{array}{rlrl}
\Rightarrow & 2 x^{2}-9=x^{2} & \mathrm{~A} & =\int_{-3}^{3}\left(x^{2}-\left(2 x^{2}-9\right)\right) d x \\
x^{2}-9=0 & & =\int_{-3}^{3}\left(9-x^{2}\right) d x \\
(x+3)(x-3)=0 & & =\left[9 x-\frac{x^{3}}{3}\right]_{-3}^{3} \\
\Rightarrow \quad x=-3,3 & & =\left(9(3)-\frac{(3)^{3}}{3}\right)-\left(9(-3)-\frac{(-3)^{3}}{3}\right) \\
& =(27-9)-(-27+9) \\
& & =18-(-18) \\
& & =36 \text { units }^{2}
\end{array}
$$

6. $y=\frac{24}{\sqrt{x}}$

$$
y=24 x^{-1 / 2}
$$

$$
\frac{d y}{d x}=-12 x^{-3 / 2}
$$

$$
\frac{d y}{d x}=\frac{-12}{\sqrt{(x)^{3}}}
$$

$$
\Rightarrow \mathrm{P}(4,12) \quad m=-\frac{3}{2}
$$

$$
y-b=m(x-a)
$$

$$
y-12=-\frac{3}{2}(x-4)
$$

$$
2 y-24=-3 x+12
$$

$$
3 x+2 y=36
$$

7. $\quad \log _{4}(5-x)-\log _{4}(3-x)=2$

$$
\begin{aligned}
\log _{4} \frac{(5-x)}{(3-x)} & =2 \\
4^{2} & =\frac{(5-x)}{(3-x)} \\
16 & =\frac{(5-x)}{(3-x)} \\
16(3-x) & =5-x \\
48-16 x & =5-x \\
43 & =15 x \\
\frac{43}{15} & =x
\end{aligned}
$$

when $x=4$
$y=\frac{24}{\sqrt{(4)}}$
$\frac{d y}{d x}=\frac{-12}{\sqrt{(4)^{3}}}$
$y=12$
$\frac{d y}{d x}=-\frac{12}{8}$
$\frac{d y}{d x}=-\frac{3}{2}$
8. For points of intersection $y=y$

$$
\begin{array}{rlrl}
\Rightarrow & k \sin 2 x & =\sin x \\
k \times 2 \sin x \cos x & =\sin x \\
2 k \sin x \cos x-\sin x & =0 \\
\sin x(2 k \cos x-1) & =0 \\
\Rightarrow \quad \sin x & =0 & \text { or } & 2 k \cos x-1
\end{array}=0
$$

\Rightarrow From diagram, $x=0, \pi, 2 \pi$ correspond to points O, B and D respectively. Hence, at A and C, $\cos x=\frac{1}{2 k}$.
9. (a) At launch, $t=0$
$\Rightarrow V=£ 252$ million
(b) $\quad 20=252 e^{-0.06335 t}$

$$
\begin{aligned}
\frac{20}{252} & =e^{-0.06335 t} \\
\log _{e}\left(\frac{20}{252}\right) & =\log _{e}\left(e^{-0.06335 t}\right) \\
\log _{e}\left(\frac{20}{252}\right) & =-0.06335 t \\
t & =\frac{\log _{e}\left(\frac{20}{252}\right)}{-0.06335} \\
t & =40 \text { years }
\end{aligned}
$$

10. $\boldsymbol{a} \cdot(\boldsymbol{a}+\boldsymbol{b}+\boldsymbol{c})$

$$
\begin{aligned}
& =\boldsymbol{a} \cdot \boldsymbol{a}+\boldsymbol{a} \cdot \boldsymbol{b}+\boldsymbol{a} \cdot \boldsymbol{c} \\
& =\boldsymbol{a}^{2}+|\boldsymbol{a}||\boldsymbol{b}| \cos 90^{\circ}+|\boldsymbol{a}||\boldsymbol{c}| \cos 60^{\circ} \\
& =(3)^{2}+0+(3)(3) \cos 60^{\circ} \\
& =9+9 \cdot \frac{1}{2} \\
& =13.5
\end{aligned}
$$

11. (a)
 $\Rightarrow x=-1$ is a solution
(b) Quotient: $x^{2}-(p-1) x+1$

For real roots $\quad b^{2}-4 a c \geq 0$

$$
\begin{aligned}
(p-1)^{2}-4(1)(1) & \geq 0 \\
p^{2}-2 p+1-4 & \geq 0 \\
p^{2}-2 p-3 & \geq 0 \\
(p+1)(p-3) & \geq 0
\end{aligned}
$$

$\Rightarrow p \leq-1$ and $p \geq 3$ for all roots of the cubic function to be real.

