Higher Maths 2005

Paper 1 Solutions

1. $m=\tan 60^{\circ}$

$$
m=\sqrt{3}
$$

$y-b=m(x-a)$
$y-0=\sqrt{3}(x-(-2))$
$y=\sqrt{3} x+2 \sqrt{3}$
2. (a) Congruent circles \Rightarrow radii equal

$$
\text { (b) } \quad \begin{aligned}
\mathrm{AB} & =\sqrt{\left(3-(-3)^{2}+(6-(-2))^{2}\right.} \\
& =\sqrt{(6)^{2}+(8)^{2}} \\
& =\sqrt{100} \\
& =10 \text { units }
\end{aligned}
$$

3.

(a) $\overrightarrow{D F}=\frac{2}{3} \overrightarrow{D B}$
(b) $\overrightarrow{A F}=\overrightarrow{A D}+\overrightarrow{D F}$
$\overrightarrow{D F}=\frac{2}{3}\left(\begin{array}{c}6 \\ 3 \\ -9\end{array}\right)$
$\overrightarrow{A F}=\left(\begin{array}{c}-6 \\ 3 \\ 9\end{array}\right)+\left(\begin{array}{c}4 \\ 2 \\ -6\end{array}\right)$
$\overrightarrow{D F}=\left(\begin{array}{c}4 \\ 2 \\ -6\end{array}\right)$
$\overrightarrow{A F}=\left(\begin{array}{c}-2 \\ 5 \\ 3\end{array}\right)$
$\Rightarrow \mathrm{F}(10,5,3)$
4.
(a) $h(x)=g(f(x))$
(b) (i) Minimum turning point at $(1 / 3,7)$

$$
\begin{aligned}
& =g(3 x-1) \\
& =(3 x-1)^{2}+7
\end{aligned}
$$

5. $\frac{d}{d x}(1+2 \sin x)^{4}=4(1+2 \sin x)^{3} \cdot 2 \cos x$

$$
=8 \cos x(1+2 \sin x)^{3}
$$

$$
\text { 6. (a) } \begin{aligned}
u_{n+1} & =k u_{n}+5 \\
L & =k L+5 \\
4 & =4 k+5 \\
-1 & =4 k \\
-\frac{1}{4} & =k
\end{aligned}
$$

(b) (i) $u_{n+1}=m u_{n}+5$
$u_{o}=3$

$$
u_{1}=3 m+5
$$

$$
u_{2}=m(3 m+5)+5
$$

$$
u_{2}=3 m^{2}+5 m+5
$$

(ii) $3 m^{2}+5 m+5=7$

$$
\begin{array}{r}
3 m^{2}+5 m-2=0 \\
(3 m-1)(m+2)=0 \\
\Rightarrow m=\frac{1}{3} \text { or } m=-2
\end{array}
$$

$m=-2$ produces a sequence with no limit as $-1<m<1$ for a limit to exist
7. (a) $a=4, b=5$
8. (a)

3 \begin{tabular}{c}
2

\hline 2

2 \& -7 \& 0 \& 9

-3 \& -9 \& 0

\hline
\end{tabular}

$\Rightarrow(x-3)$ is a factor

Quotient: $2 x^{2}-x-3$

$$
\begin{aligned}
\Rightarrow f(x) & =(x-3)\left(2 x^{2}-x-3\right) \\
& =(x-3)(x+1)(2 x-3)
\end{aligned}
$$

(b) $f(x)$ crosses x-axis when $y=0$

$$
\begin{aligned}
& \Rightarrow x=-1, \frac{3}{2}, 3 \\
& \Rightarrow(-1,0) \quad(3 / 2,0) \quad(3,0)
\end{aligned}
$$

$f(x)$ crosses y-axis when $x=0$

$$
\begin{aligned}
& \Rightarrow y=9 \\
& \Rightarrow(0,9)
\end{aligned}
$$

8. (c) $f^{\prime}(x)=6 x^{2}-14 x$

For stationary points, $f^{\prime}(x)=0$

$$
\begin{array}{r}
\Rightarrow \quad 6 x^{2}-14 x=0 \\
2 x(3 x-7)=0 \\
\Rightarrow \quad x=0 \text { or } x=\frac{7}{3}
\end{array}
$$

$$
\text { when } x=0, \mathrm{y}=9 \quad \text { when } x=\frac{7}{3}, \mathrm{y}=2\left(\frac{7}{3}\right)^{3}-7\left(\frac{7}{3}\right)+9
$$

$$
=\frac{686}{27}-\frac{343}{9}+9
$$

$$
=\frac{686}{27}-\frac{1029}{27}+\frac{243}{27}
$$

$$
=\frac{-100}{27}
$$

x	\rightarrow	0	\rightarrow	$\frac{7}{3}$	\rightarrow
$f^{\prime}(x)$	+	0	-	0	+
	$/$	-	1	-	1

\Rightarrow Max TP at $(0,9)$
$\Rightarrow \operatorname{Min}$ TP at $\left(\frac{7}{3}, \frac{-100}{27}\right)$
\Rightarrow greatest value of f in the interval $-2 \leq x \leq 2$ is 9 and least value of f is -35

$$
\begin{aligned}
& \text { when } x=-2, y=2(-2)^{3}-7(-2)+9 \\
& =-16-28+9 \\
& =-35 \\
& (-2,-35) \\
& y=2(2)^{3}-7(2)+9 \\
& =16-28+9 \\
& =-3 \\
& (2,-3)
\end{aligned}
$$

9. $\cos 2 x=\frac{7}{25}$

$$
\cos 2 x=\frac{7}{25}
$$

$$
\begin{aligned}
2 \cos ^{2} x-1 & =\frac{7}{25} & 1-2 \sin ^{2} x & =\frac{7}{25} \\
2 \cos ^{2} x & =\frac{32}{25} & -2 \sin ^{2} x & =-\frac{18}{25} \\
\cos ^{2} x & =\frac{16}{25} & \sin ^{2} x & =\frac{9}{25} \\
\cos x & = \pm \frac{4}{5} & \sin x & = \pm \frac{3}{5}
\end{aligned}
$$

$$
\Rightarrow \cos x=\frac{4}{5} \text { and } \sin x=\frac{3}{5} \quad \text { for } 0<x<\frac{\pi}{2} \quad \text { (only } 1^{\text {st }} \text { quadrant solutions required) }
$$

10. (a)
(b)

$$
\begin{aligned}
& \int_{i}^{\sin x-\sqrt{3} \cos x} \\
& k \sin (x-a)=k \sin x \cos a-k \cos x \sin a \\
& k \cos a=1 \quad k=\sqrt{(1)^{2}+(\sqrt{3})^{2}} \quad \tan a=\frac{k \sin a}{k \cos a} \\
& k \sin a=\sqrt{3} \quad k=\sqrt{1+3} \\
& \tan a=\frac{\sqrt{3}}{1} \\
& a=\frac{\pi}{3} \\
& a \text { is in } 1^{\text {st }} \text { quadrant so } a=\frac{\pi}{3}
\end{aligned}
$$

11. (a) $(x-t)^{2}+(y-0)^{2}=(2)^{2}$

$$
(x-t)^{2}+y^{2}=4
$$

(b) $\quad(x-t)^{2}+(2 x)^{2}=4$

$$
\begin{array}{r}
x^{2}-2 t x+t^{2}+4 x^{2}=4 \\
5 x^{2}-2 t x+t^{2}-4=0
\end{array}
$$

If $y=2 x$ is tangent then $b^{2}-4 a c=0$

$$
\begin{aligned}
(-2 t)^{2}-4(5)\left(t^{2}-4\right) & =0 \\
4 t^{2}-20 t^{2}+80 & =0 \\
80-16 t^{2} & =0 \\
80 & =16 t^{2} \\
5 & =t^{2} \\
t & = \pm \sqrt{5}
\end{aligned}
$$

$\Rightarrow t=\sqrt{5}$ as t is on positive x-axis in diagram

