Higher Maths 2005 Paper 1 Solutions

1.
$$m = \tan 60^{\circ}$$
$$m = \sqrt{3}$$
$$y - b = m(x - a)$$
$$y - 0 = \sqrt{3} (x - (-2))$$
$$y = \sqrt{3} x + 2\sqrt{3}$$

2. (a) Congruent circles \Rightarrow radii equal P = midpoint of AB From equations; A(-3, -2) and B(3,6) \Rightarrow P(0,2) (b) $AB = \sqrt{(3 - (-3)^2 + (6 - (-2))^2}$ $= \sqrt{(6)^2 + (8)^2}$ $= \sqrt{100}$ = 10 units

3. (a)
$$\overrightarrow{DF} = \frac{2}{3}\overrightarrow{DB}$$
 (b) $\overrightarrow{AF} = \overrightarrow{AD} + \overrightarrow{DF}$
 $\overrightarrow{DF} = \frac{2}{3} \begin{pmatrix} 6\\3\\-9 \end{pmatrix}$ $\overrightarrow{AF} = \begin{pmatrix} -6\\3\\9 \end{pmatrix} + \begin{pmatrix} 4\\2\\-6 \end{pmatrix}$
 $\overrightarrow{DF} = \begin{pmatrix} 4\\2\\-6 \end{pmatrix}$ $\overrightarrow{AF} = \begin{pmatrix} -2\\5\\3 \end{pmatrix}$

$$\Rightarrow$$
 F(10,5,3)

4.

(a) h(x) = g(f(x))= g(3x - 1)= $(3x - 1)^2 + 7$

- (b) (i) Minimum turning point at $(\frac{1}{3},7)$
 - (ii) Range: $y \ge 7$
- 5. $\frac{d}{dx}(1+2\sin x)^4 = 4(1+2\sin x)^3 \cdot 2\cos x$ = $8\cos x(1+2\sin x)^3$

6. (a)
$$u_{n+1} = ku_n + 5$$

 $L = kL + 5$
 $4 = 4k + 5$
 $-1 = 4k$
 $-\frac{1}{4} = k$
(b) (i) $u_{n+1} = mu_n + 5$
 $u_1 = 3m + 5$
 $u_2 = m(3m + 5) + 5$
 $u_2 = 3m^2 + 5m + 5$
 $(ii) 3m^2 + 5m + 5 = 7$
 $3m^2 + 5m - 2 = 0$
 $(3m - 1)(m + 2) = 0$
 $\Rightarrow m = \frac{1}{3} \text{ or } m = -2$

m = -2 produces a sequence with no limit as -1 < m < 1 for a limit to exist

7. (a)
$$a = 4, b = 5$$
 (b) Domain: $x > 4$

8. (a)

3	2	-7	0	9	
		6	-3	_9	
	2	-1	-3	0	\Rightarrow (x – 3) is a factor

Quotient: $2x^2 - x - 3$

$$\Rightarrow f(x) = (x-3)(2x^2 - x - 3) = (x-3)(x+1)(2x-3)$$

(b) f(x) crosses x-axis when y = 0

$$\Rightarrow x = -1, \frac{3}{2}, 3$$
$$\Rightarrow (-1,0) \qquad (^{3}/_{2},0) \qquad (3,0)$$

f(x) crosses y-axis when x = 0

$$\Rightarrow y = 9$$
$$\Rightarrow (0,9)$$

8.	(c)	f'(.	x) = 0	$5x^2$ -	-14x						
	(-)	For stationary points. $f'(x) = 0$									
		For stationary points, $f(x) = 0$									
		$\Rightarrow 6x^2 - 14x = 0$									
		2x(3x-7) = 0									
		$\Rightarrow x = 0 \text{ or } x = \frac{7}{3}$									
		when $x = 0$, $y = 9$						when $x = \frac{7}{3}$, $y = 2\left(\frac{7}{3}\right)^3 - 7\left(\frac{7}{3}\right) + 9$			
								$= \frac{686}{27} - \frac{343}{9} + 9$			
								$= \frac{686}{27} - \frac{1029}{27} + \frac{243}{27}$			
								$=\frac{-100}{27}$			
		x	\rightarrow	0	\rightarrow	$\frac{7}{3}$	$ \rightarrow$				
	f	f'(x)	+	0	_	0	+	\Rightarrow Max TP at (0,9)			
			/	_	١	_	/	$\Rightarrow \operatorname{Min} \operatorname{TP} \operatorname{at} \left(\frac{7}{3}, \frac{-100}{27} \right)$			

when
$$x = -2$$
, $y = 2(-2)^3 - 7(-2) + 9$
 $= -16 - 28 + 9$
 $= -35$
 $(-2, -35)$
 $y = 2(2)^3 - 7(2) + 9$
 $= 16 - 28 + 9$
 $= -3$
 $(2, -3)$

 \Rightarrow greatest value of f in the interval $-2 \le x \le 2$ is 9 and least value of f is -35

9.
$$\cos 2x = \frac{7}{25}$$
 $\cos 2x = \frac{7}{25}$

$$2\cos^2 x - 1 = \frac{7}{25} \qquad 1 - 2\sin^2 x = \frac{7}{25}$$

$$2\cos^2 x = \frac{32}{25} \qquad -2\sin^2 x = -\frac{18}{25}$$

$$\cos^2 x = \frac{16}{25}$$
 $\sin^2 x = \frac{9}{25}$

$$\Rightarrow \cos x = \frac{4}{5} \text{ and } \sin x = \frac{3}{5} \qquad \text{for } 0 < x < \frac{\pi}{2}$$

10. (a)
$$\sin x - \sqrt{3} \cos x$$
$$k \sin(x-a) = k \sin x \cos a - k \cos x \sin a$$

$$k\cos a = 1 \qquad k = \sqrt{(1)^2 + (\sqrt{3})^2} \qquad \tan a = \frac{k\sin a}{k\cos a} \qquad S \qquad A$$

$$k\sin a = \sqrt{3} \qquad k = \sqrt{1+3} \qquad \tan a = \frac{\sqrt{3}}{1} \qquad \frac{\sqrt{1+3}}{\sqrt{1+3}} \qquad \tan a = \frac{\sqrt{3}}{1} \qquad \frac{\sqrt{1+3}}{\sqrt{1+3}} \qquad \frac{\sqrt{1+3}}{\sqrt{$$

$$\Rightarrow \sin x - \sqrt{3}\cos x = 2\sin\left(x - \frac{\pi}{3}\right)$$

11. (a)
$$(x-t)^2 + (y-0)^2 = (2)^2$$

 $(x-t)^2 + y^2 = 4$

(b)
$$(x-t)^2 + (2x)^2 = 4$$

 $x^2 - 2tx + t^2 + 4x^2 = 4$
 $5x^2 - 2tx + t^2 - 4 = 0$

If y = 2x is tangent then $b^2 - 4ac = 0$

$$(-2t)^{2} - 4(5)(t^{2} - 4) = 0$$
$$4t^{2} - 20t^{2} + 80 = 0$$
$$80 - 16t^{2} = 0$$
$$80 = 16t^{2}$$
$$5 = t^{2}$$
$$t = \pm \sqrt{5}$$

 $\Rightarrow t = \sqrt{5}$ as *t* is on positive *x*-axis in diagram