# Perth Academy <br>  

Mathematics

Higher
2004

Paper 1

Non-Calculator

## FORMULAE LIST

## Circle:

The equation $x^{2}+y^{2}+2 g x+2 f y+c=0$ represents a circle centre $(-g,-f)$ and radius $\sqrt{g^{2}+f^{2}-c}$.
The equation $(x-a)^{2}+(y-b)^{2}=r^{2}$ represents a circle centre $(a, b)$ and radius $r$.

Scalar Product:

$$
\boldsymbol{a} \cdot \boldsymbol{b}=|\boldsymbol{a}||\boldsymbol{b}| \cos \theta, \text { where } \theta \text { is the angle between } \boldsymbol{a} \text { and } \boldsymbol{b}
$$

$$
\text { or } \quad \boldsymbol{a} \cdot \boldsymbol{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3} \text { where } \boldsymbol{a}=\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right) \text { and } \boldsymbol{b}=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right) \text {. }
$$

Trigonometric formulae:

$$
\begin{aligned}
\sin (A \pm B) & =\sin A \cos B \pm \cos A \sin B \\
\cos (A \pm B) & =\cos A \cos B \mp \sin A \sin B \\
\sin 2 A & =2 \sin A \cos A \\
\cos 2 A & =\cos ^{2} A-\sin ^{2} A \\
& =2 \cos ^{2} A-1 \\
& =1-2 \sin ^{2} A
\end{aligned}
$$

Table of standard derivatives:

| $f(x)$ | $f^{\prime}(x)$ |
| :---: | :---: |
| $\sin a x$ | $a \cos a x$ |
| $\cos a x$ | $-a \sin a x$ |

Table of standard integrals:

| $f(x)$ | $\int f(x) d x$ |
| :---: | :---: |
| $\sin a x$ | $-\frac{1}{a} \cos a x+C$ |
| $\cos a x$ | $\frac{1}{a} \sin a x+C$ |

1. The point $A$ has coordinates $(7,4)$. The straight lines with equations $x+3 y+1=0$ and $2 x+5 y=0$ intersect at B.
(a) Find the gradient of AB.
(b) Hence show that AB is perpendicular to only one of these two lines.
2. $f(x)=x^{3}-x^{2}-5 x-3$.
(a) (i) Show that $(x+1)$ is a factor of $f(x)$.
(ii) Hence or otherwise factorise $f(x)$ fully.
(b) One of the turning points of the graph of $y=f(x)$ lies on the $x$-axis. Write down the coordinates of this turning point.
3. Find all the values of $x$ in the interval $0 \leq x \leq 2 \pi$ for which $\tan ^{2}(x)=3$.
4. The diagram shows the graph of $y=g(x)$.
(a) Sketch the graph of $y=-g(x)$.
(b) On the same diagram, sketch the graph of $y=3-g(x)$.


2
5. A, B and C have coordinates $(-3,4,7),(-1,8,3)$ and $(0,10,1)$ respectively.
(a) Show that A, B and C are collinear.
(b) Find the coordinates of $D$ such that $\overrightarrow{A D}=4 \overrightarrow{\mathrm{AB}}$.
6. Given that $y=3 \sin (x)+\cos (2 x)$, find $\frac{d y}{d x}$.
7. Find $\int_{0}^{2} \sqrt{4 x+1} d x$.
8. (a) Write $x^{2}-10 x+27$ in the form $(x+b)^{2}+c$.
(b) Hence show that the function $g(x)=\frac{1}{3} x^{3}-5 x^{2}+27 x-2$ is always increasing.
9. Solve the equation $\log _{2}(x+1)-2 \log _{2}(3)=3$.
10. In the diagram angle $\mathrm{DEC}=$ angle $\mathrm{CEB}=x^{\circ}$ and angle $\mathrm{CDE}=$ angle $\mathrm{BEA}=90^{\circ}$. $\mathrm{CD}=1$ unit; $\mathrm{DE}=3$ units.
By writing angle DEA in terms of $x^{\circ}$, find the exact value of

11. The diagram shows a parabola passing through the points $(0,0),(1,-6)$ and $(2,0)$.
(a) The equation of the parabola is of the form $y=a x(x-b)$.
Find the values of $a$ and $b$.
(b) This parabola is the graph of $y=f^{\prime}(x)$. Given that $f(1)=4$, find the formula for $f(x)$.


