Perth Academy

Mathematics

Higher

2003

Paper 2

Calculator

FORMULAE LIST

Circle:

The equation $x^2 + y^2 + 2gx + 2fy + c = 0$ represents a circle centre (-g, -f) and radius $\sqrt{g^2 + f^2 - c}$. The equation $(x - a)^2 + (y - b)^2 = r^2$ represents a circle centre (a, b) and radius r.

Scalar Product:

 $a.b = |a| |b| \cos \theta$, where θ is the angle between a and b

or
$$\mathbf{a}.\mathbf{b} = a_1b_1 + a_2b_2 + a_3b_3$$
 where $\mathbf{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$ and $\mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$.

Trigonometric formulae:

$$\sin (A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos (A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\sin 2A = 2\sin A \cos A$$

$$\cos 2A = \cos^2 A - \sin^2 A$$

$$= 2\cos^2 A - 1$$

$$= 1 - 2\sin^2 A$$

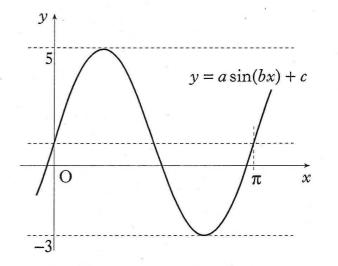
Table of standard derivatives:

f(x)	f'(x)
$\sin ax$	$a\cos ax$
$\cos ax$	$-a\sin ax$

Table of standard integrals:

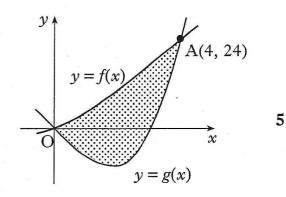
f(x)	$\int f(x) dx$
sin ax	$-\frac{1}{a}\cos ax + C$
cosax	$\frac{1}{a}\sin ax + C$

- 1. $f(x) = 6x^3 5x^2 17x + 6$.
 - (a) Show that (x-2) is a factor of f(x).
 - (b) Express f(x) in its fully factorised form.


3

5

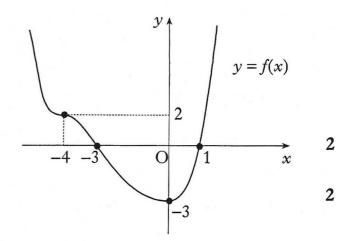
6


2. The diagram shows a sketch of part of the graph of a trigonometric function whose equation is of the form $y = a \sin(bx) + c$.

Determine the values of a, b and c.

3. The incomplete graphs of $f(x) = x^2 + 2x$ and $g(x) = x^3 - x^2 - 6x$ are shown in the diagram. The graphs intersect at A(4, 24) and the origin.

Find the shaded area enclosed between the curves.

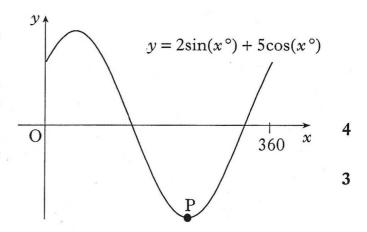


- **4.** (a) Find the equation of the tangent to the curve with equation $y = x^3 + 2x^2 3x + 2$ at the point where x = 1.
 - (b) Show that this line is also a tangent to the circle with equation $x^2 + y^2 12x 10y + 44 = 0$ and state the coordinates of the point of contact.

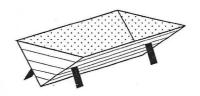
5. The diagram shows the graph of a function f.

f has a minimum turning point at (0, -3) and a point of inflexion at (-4, 2).

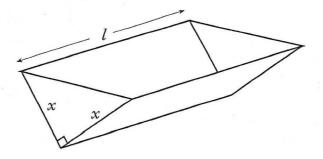
- (a) Sketch the graph of y = f(-x).
- (b) On the same diagram, sketch the graph of y = 2f(-x).



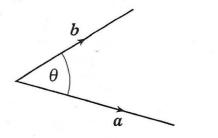
6. If $f(x) = \cos(2x) - 3\sin(4x)$, find the exact value of $f'(\frac{\pi}{6})$.


4

5


- 7. Part of the graph of $y = 2\sin(x^\circ) + 5\cos(x^\circ)$ is shown in the diagram.
 - (a) Express $y = 2\sin(x^\circ) + 5\cos(x^\circ)$ in the form $k\sin(x^\circ + a^\circ)$ where k > 0 and $0 \le a < 360$.
 - (b) Find the coordinates of the minimum turning point P.

8. An open water tank, in the shape of a triangular prism, has a capacity of 108 litres. The tank is to be lined on the inside in order to make it watertight.



The triangular cross-section of the tank is right-angled and isosceles, with equal sides of length x cm. The tank has a length of l cm.

- (a) Show that the surface area to be lined, $A \text{ cm}^2$, is given by $A(x) = x^2 + \frac{432000}{x}$
- (b) Find the value of x which minimises this surface area.

9. The diagram shows vectors \boldsymbol{a} and \boldsymbol{b} . If $|\boldsymbol{a}| = 5$, $|\boldsymbol{b}| = 4$ and $\boldsymbol{a} \cdot (\boldsymbol{a} + \boldsymbol{b}) = 36$, find the size of the acute angle $\boldsymbol{\theta}$ between \boldsymbol{a} and \boldsymbol{b} .

- 10. Solve the equation $3\cos(2x) + 10\cos(x) 1 = 0$ for $0 \le x \le \pi$, correct to 2 decimal places.
- 5

2

4

- 11. (a) (i) Sketch the graph of $y = a^x + 1$, a > 2.
 - (ii) On the same diagram, sketch the graph of $y = a^{x+1}$, a > 2.
 - (b) Prove that the graphs intersect at a point where the x-coordinate is $\log_a \left(\frac{1}{a-1}\right)$.