Perth Academy

Mathematics

Higher

2003

Paper 1

Non-Calculator

FORMULAE LIST

Circle:

The equation $x^2 + y^2 + 2gx + 2fy + c = 0$ represents a circle centre (-g, -f) and radius $\sqrt{g^2 + f^2 - c}$. The equation $(x - a)^2 + (y - b)^2 = r^2$ represents a circle centre (a, b) and radius r.

Scalar Product: $a.b = |a| |b| \cos \theta$, where θ is the angle between a and b

or
$$\boldsymbol{a}.\boldsymbol{b} = a_1b_1 + a_2b_2 + a_3b_3$$
 where $\boldsymbol{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$ and $\boldsymbol{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$.

1

Trigonometric formulae:

$$sin (A \pm B) = sin A cos B \pm cos A sin B$$

$$cos (A \pm B) = cos A cos B \mp sin A sin B$$

$$sin 2A = 2sin A cos A$$

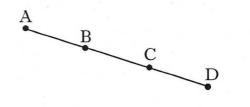
$$cos 2A = cos^{2} A - sin^{2} A$$

$$= 2cos^{2} A - 1$$

$$= 1 - 2sin^{2} A$$

Table of standard derivatives:

f(x)	f'(x)
sin <i>ax</i>	acosax
cosax	$-a\sin ax$


Table of standard integrals:

f(x)	$\int f(x) dx$
sinax	$-\frac{1}{a}\cos ax + C$
cos ax	$\frac{1}{a}\sin ax + C$

- 1. Find the equation of the line which passes through the point (-1, 3) and is perpendicular to the line with equation 4x + y 1 = 0.
- 2. (a) Write $f(x) = x^2 + 6x + 11$ in the form $(x + a)^2 + b$. 2
 - (b) Hence or otherwise sketch the graph of y = f(x).
- Vectors u and v are defined by u = 3i + 2j and v = 2i 3j + 4k.
 Determine whether or not u and v are perpendicular to each other.
- 4. A recurrence relation is defined by $u_{n+1} = pu_n + q$, where $-1 and <math>u_0 = 12$.
 - (a) If $u_1 = 15$ and $u_2 = 16$, find the values of p and q.
 - (b) Find the limit of this recurrence relation as $n \to \infty$.

5. Given that
$$f(x) = \sqrt{x} + \frac{2}{x^2}$$
, find $f'(4)$.

6. A and B are the points (-1, -3, 2) and (2, -1, 1) respectively.
B and C are the points of trisection of AD, that is AB = BC = CD.
Find the coordinates of D.

7. Show that the line with equation y = 2x + 1 does not intersect the parabola with equation $y = x^2 + 3x + 4$.

8. Find $\int_{0}^{1} \frac{dx}{(3x+1)^{\frac{1}{2}}}$.

- 9. Functions $f(x) = \frac{1}{x-4}$ and g(x) = 2x + 3 are defined on suitable domains.
 - (a) Find an expression for h(x) where h(x) = f(g(x)).
 - (b) Write down any restriction on the domain of h.

2

1

3

2

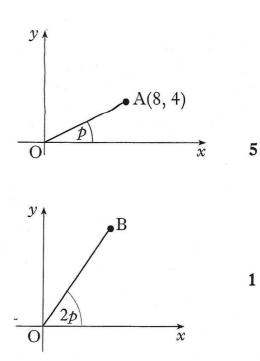
2

2

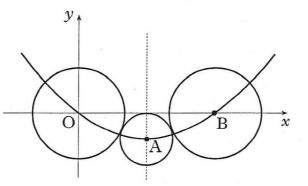
2

5

3


5

4


- 10. A is the point (8, 4). The line OA is inclined at an angle p radians to the x-axis.
 - (a) Find the exact values of:
 - (i) sin(2p);
 - (ii) $\cos(2p)$.

The line OB is inclined at an angle 2p radians to the x-axis.

(b) Write down the exact value of the gradient of OB.

- 11. • O, A and B are the centres of the three circles shown in the diagram below.
 - The two outer circles are congruent and each touches the smallest circle.
 - Circle centre A has equation $(x 12)^2 + (y + 5)^2 = 25$.
 - The three centres lie on a parabola whose axis of symmetry is shown by the broken line through A.

- (a) (i) State the coordinates of A and find the length of the line OA. 2 (ii) Hence find the equation of the circle with centre B. 3 (b) The equation of the parabola can be written in the form y = px(x + q). 2
 - Find the values of p and q.
- Simplify $3\log_e(2e) 2\log_e(3e)$ expressing your answer in the form 12. A + $\log_e B - \log_e C$ where A, B and C are whole numbers.

4