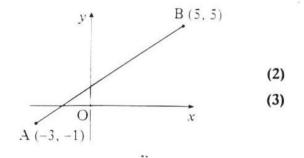
SCOTTISH Certificate of	MONDAY, 10 MAY 9.15 AM - 11.15 AM	MATHEMATICS
EDUCATION	9.15 AM - 11.15 AM	HIGHER GRADE
1999		Paper I

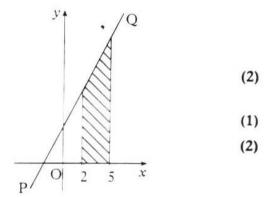
All questions should be attempted	Marks

1.	(<i>a</i>)	Show that $x = 2$ is a root of the equation $2x^3 + x^2 - 13x + 6 = 0$.	(1)
	(b)	Hence find the other roots.	(3)

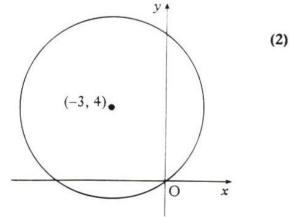
- A and B are the points (-3, -1) and (5, 5).
 Find the equation of
 - (a) the line AB
 - (b) the perpendicular bisector of AB.



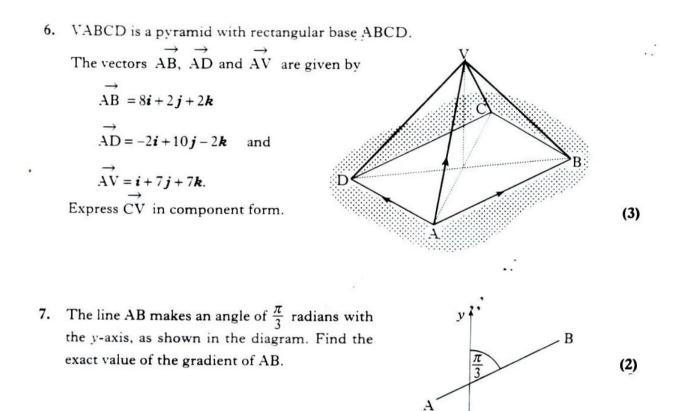
- 3. The line PQ has equation y = 2x + 4.
 - (a) Find, without using calculus, the area of the shaded trapezium shown in the diagram.
 - (b) Express the area of this trapezium as a definite integral.
 - (c) Evaluate this integral.



4. Find the equation of the circle with centre (-3, 4) and passing through the origin.



5. Given $f(x) = 3x^2(2x - 1)$, find f'(-1).



- 8. (i) Write down the condition for the equation $ax^2 + bx + c = 0$ to have equal roots.
 - (ii) Hence, or otherwise, show that the equation x(x + 7) = x 9 has equal roots. (3)

O

9. The point P(-1, 7) lies on the curve with equation $y = 5x^2 + 2$. Find the equation of the tangent to the curve at P.

(4)

x

[2500/201]

Page four

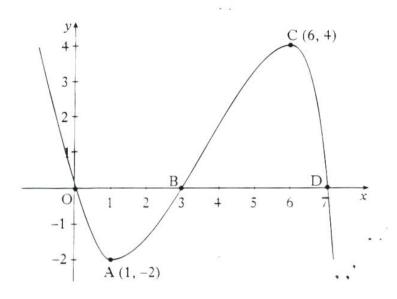
(3)

10. Part of the graph of y = f(x) is shown in the diagram. On separate diagrams, sketch the graph of

(a)
$$y = f(x+1)$$
 (2)

$$(b) \quad y = -2f(x).$$

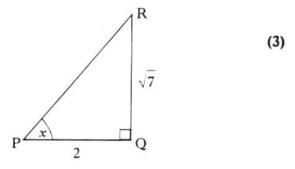
Indicate on each graph the images of O, A, B, C and D.



11. The graph of y = g(x) passes through the point (1, 2).

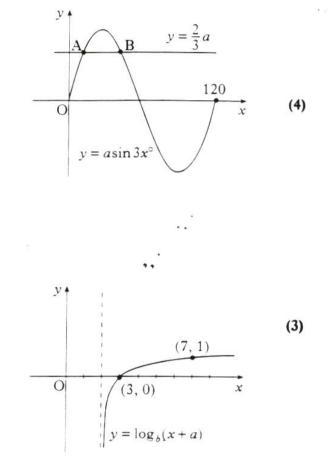
If
$$\frac{dy}{dx} = x^3 + \frac{1}{x^2} - \frac{1}{4}$$
, express y in terms of x. (4)

12. Using triangle PQR, as shown, find the exact value of $\cos 2x$.



- 13. (a) Show that $f(x) = 2x^2 4x + 5$ can be written in the form $f(x) = a(x+b)^2 + c$. (3)
 - (b) Hence write down the coordinates of the stationary point of y = f(x) and state its nature. (2)
- 14. The diagram shows part of the graph of $y = a \sin 3x^{\circ}$ and the line with equation $y = \frac{2}{3}a$.

Find the x-coordinates of A and B.



15. The diagram shows part of the graph of $y = \log_b(x+a)$.

Determine the values of a and b.

16. A curve has equation $y = 2x^3 + 3x^2 + 4x - 5$. Prove that this curve has no stationary points.

(5)

17. The diagram shows two vectors \mathbf{a} and \mathbf{b} , with $|\mathbf{a}| = 3$ and $|\mathbf{b}| = 2\sqrt{2}$. Higher Past Paper - 1999 - P1 These vectors are inclined at an angle of 45° to each other. (a) Evaluate (i) $\mathbf{a}.\mathbf{a}$ (ii) $\mathbf{b}.\mathbf{b}$

(iii) **a.b**

(b) Another vector \boldsymbol{p} is defined by $\boldsymbol{p} = 2\boldsymbol{a} + 3\boldsymbol{b}$. Evaluate $\boldsymbol{p} \cdot \boldsymbol{p}$ and hence write down $|\boldsymbol{p}|$. (4)

18. Two sequences are defined by the recurrence relations

$$u_{n+1} = 0 \cdot 2u_n + p, \quad u_0 = 1 \text{ and}$$

 $v_{n+1} = 0 \cdot 6v_n + q, \quad v_0 = 1.$

If both sequences have the same limit, express p in terms of q. (3)

19. Given $f(x) = \cos^2 x - \sin^2 x$, find f'(x).

20. Find
$$\int \frac{x^2 - 5}{x \sqrt{x}} dx$$
. (4)

21. A function f can be expressed as an infinite series by

$$f(x) = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24} + \frac{x^5}{120} + \dots$$

(a) Write down the series for f(2x) as far as the term in x^5 . (1)

The derivative of f(x) can be calculated as follows.

$$f(x) = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24} + \frac{x^5}{120} + \dots$$

so $f'(x) = 0 + 1 + \frac{2x}{2} + \frac{3x^2}{6} + \frac{4x^3}{24} + \frac{5x^4}{120} + \dots$
 $= 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24} \dots$
ie $f'(x) = f(x)$

(b) Find f'(2x) in terms of f(2x).

[END OF QUESTION PAPER]

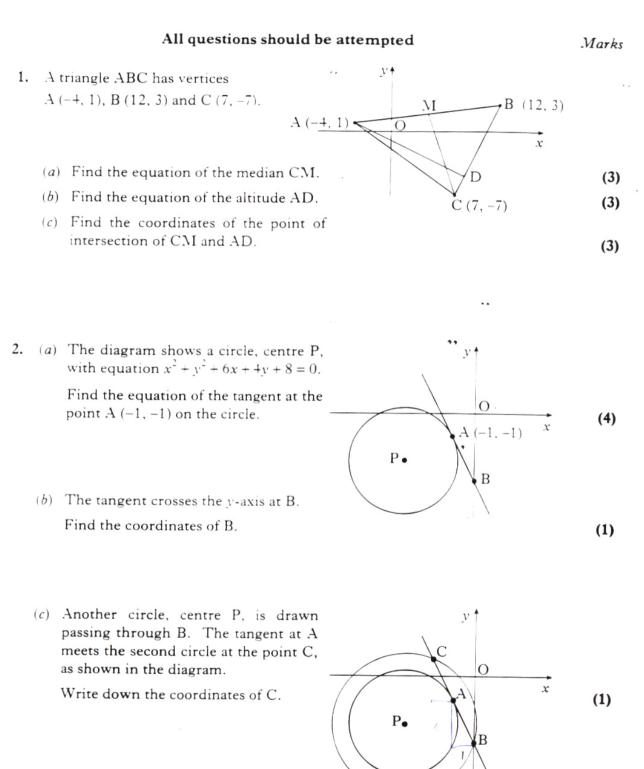
(3)

(2)

(3)

. .

SCOTTISH Certificate of	MONDAY, 10 MAY 1.00 PM - 3.30 PM	MATHEMATICS
EDUCATION	1.00 FM = 9.50 FM	HIGHER GRADE
1999		Paper II



(d) Find the equation of the circle with BC as diameter.

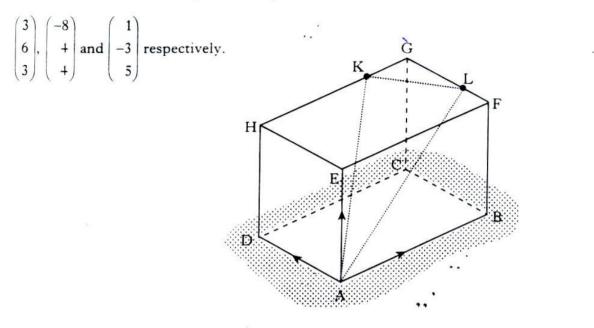
(2)

3. ABCDEFGH is a cuboid.

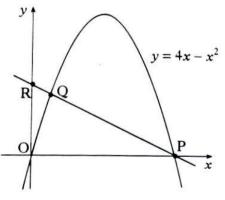
K lies two thirds of the way along HG, (ie HK:KG = 2:1).

L lies one quarter of the way along FG, (ie FL:LG = 1:3).

 $\rightarrow \rightarrow \rightarrow \rightarrow AB$, AD and AE can be represented by the vectors



- (a) Calculate the components of AK.
 - (b) Calculate the components of AL.
 - (c) Calculate the size of angle KAL.
- 4. The parabola shown in the diagram has equation $y = 4x - x^2$ and intersects the x-axis at the origin and P.



(a)	Find the coordinates of the point P.	(2)
(b)	R is the point $(0, 2)$. Find the equation of PR.	(2)
(c)	The line and the parabola also intersect at Q. Find the coordinates of Q.	(4)

(2)

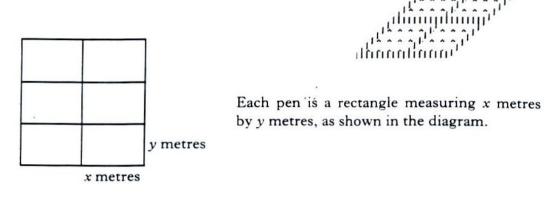
(2)

(5)

hnnrih

Marks

5. A zookeeper wants to fence off six individual animal pens.



- (a) (i) Express the total length of fencing in terms of x and y.
 - (ii) Given that the total length of fencing is 360 m, show that the total area, $A m^2$, of the six pens is given by $A(x) = 240x \frac{16}{3}x^2$. (4)
- (b) Find the values of x and y which give the maximum area and write down this maximum area.(6)
- 6. Functions f and g are defined on the set of real numbers by

$$f(x) = x - 1$$
$$g(x) = x^2.$$

(a) Find formulae for

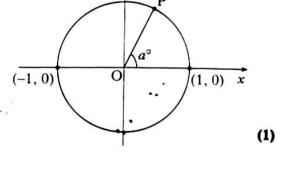
(i)
$$f(g(x))$$

(ii) $g(f(x))$. (4)

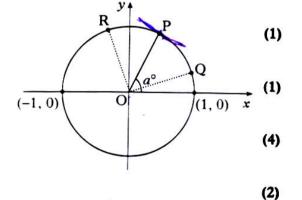
- (b) The function h is defined by h(x) = f(g(x)) + g(f(x)). Show that $h(x) = 2x^2 - 2x$ and sketch the graph of h. (3)
- (c) Find the area enclosed between this graph and the x-axis. (4)

[Turn over

- 7. The intensity I_{t} of light is reduced as it passes through a filter according to the law $I_t = I_0 e^{-kt}$ where I_0 is the initial intensity and I_t is the intensity after passing through a filter of thickness $t \, \text{cm.} k$ is a constant.
 - (a) A filter of thickness 4 cm reduces the intensity from 120 candle-power to 90 candle-power. Find the value of k.
 - (b) Light is passed through a filter of thickness 10 cm. Find the percentage reduction in its intensity.
- 8. The diagram shows a circle of radius 1 unit and centre the origin. The radius OP makes an angle a° with the positive direction of the x-axis.
 - (a) Show that P is the point $(\cos a^\circ, \sin a^\circ)$.
 - (b) If $\hat{POQ} = 45^\circ$, deduce the coordinates of Q in terms of a.
 - (c) If $POR = 45^\circ$, deduce the coordinates of R in terms of a.
 - (d) Hence find an expression for the gradient of QR in its simplest form.
 - (e) Show that the tangent to the circle at P is parallel to QR.



y ŧ



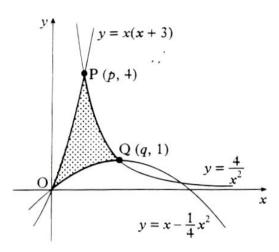
9. Solve the equation $2\sin x^\circ - 3\cos x^\circ = 2 \cdot 5$ in the interval $0 \le x < 360$. (8)

(4)

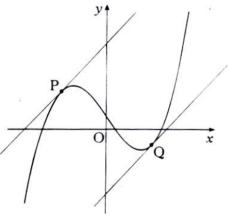
(3)

10. The origin, O, and the points P and Q are the vertices of a curved "triangle" which is shaded in the diagram.

The sides lie on curves with equations y = x(x+3), $y = x - \frac{1}{4}x^2$ and $y = \frac{4}{r^2}$.



- (a) P and Q have coordinates (p, 4) and (q, 1). Find the values of p and q.
 (b) Calculate the shaded area.
 (7)
- 11. The diagram shows a sketch of the graph of $y = x^3 - 9x + 4$ and two parallel tangents drawn at P and Q.



- (a) Find the equations of the tangents to the curve y = x³ 9x + 4 which have gradient 3.
 (6)
- (b) Show that the shortest distance between the tangents is $\frac{16\sqrt{10}}{5}$. (6)

[END OF QUESTION PAPER]