Circle C_{1} has equation $(x-4)^{2}+(y+2)^{2}=37$.
Circle C_{2} has equation $x^{2}+y^{2}+2 x-6 y-7=0$.
(a) Calculate the distance between the centres of C_{1} and C_{2}. 3
(b) Hence, show that C_{1} and C_{2} intersect at two distinct points.

Answers:
(a) $\sqrt{50}$ or $5 \sqrt{2}$ or $7.07 \ldots$
(b) State that the radius of C 1 is $\sqrt{37}$.

Calculate the radius of C_{2} to be $\sqrt{17}$.
Show that the distance between the centres is less than the sum of the radii.

