A cylindrical tin of baked beans has a volume of $450 \mathrm{~cm}^{3}$.
The radius of the tin is $r \mathrm{~cm}$ and its height is $h \mathrm{~cm}$.
A net of the tin is shown in the diagram.

(a) Show that the surface area of the tin, A square centimetres, is given by

$$
A(r)=2 \pi r^{2}+\frac{900}{r}
$$

(b) Determine the radius that will minimise the surface area.

Answers:
(a) Obtain $\mathrm{A}(r, h)=2 \pi r^{2}+2 \pi r h$

Eliminate h using $\pi r^{2} h=450$
Obtain the required expression for $\mathrm{A}(r)$
(b) minimum when $r=\sqrt[3]{\frac{225}{\pi}}$

