(a) (i) Show that $(x-2)$ is a factor of $2 x^{3}-3 x^{2}-3 x+2$.
(ii) Hence, factorise $2 x^{3}-3 x^{2}-3 x+2$ fully.

The fifth term, u_{5}, of a sequence is $u_{5}=2 a-3$.
The terms of the sequence satisfy the recurrence relation $u_{n+1}=a u_{n}-1$.
(b) Show that $u_{7}=2 a^{3}-3 a^{2}-a-1$.

For this sequence, it is known that

- $u_{7}=u_{5}$
- a limit exists.
(c) (i) Determine the value of a. 3
(ii) Calculate the limit. 1

Answers:
(a) (i) Use 2 in synthetic division or in evaluation of cubic. Show that the remainder upon division by $(x-2)$ is 0 .
(ii) $\quad(x-2)(2 x-1)(x+1)$
(b) Use the recurrence relation to obtain u_{6} and then u_{7}.
(c) (i) $\frac{1}{2}$
(ii) -2

