A version of the following problem first appeared in print in the 16th Century.
A frog and a toad fall to the bottom of a well that is 50 feet deep.
Each day, the frog climbs 32 feet and then rests overnight. During the night, it slides down $\frac{2}{3}$ of its height above the floor of the well.
The toad climbs 13 feet each day before resting.
Overnight, it slides down $\frac{1}{4}$ of its height above the floor of the well.

Their progress can be modelled by the recurrence relations:

- $f_{n+1}=\frac{1}{3} f_{n}+32, \quad f_{1}=32$
- $\quad t_{n+1}=\frac{3}{4} t_{n}+13, \quad t_{1}=13$
where f_{n} and t_{n} are the heights reached by the frog and the toad at the end of the nth day after falling in.
(a) Calculate t_{2}, the height of the toad at the end of the second day.
(b) Determine whether or not either of them will eventually escape from the well.

Answers:
(a) $22 \frac{3}{4}$ or $\frac{91}{4}$ or 22.75
(b) Calculate the limts for both sequences: 48 for the frog and 52 for the toad. So only the toad will escape.

