We can obtain the graph of

$$
y=a f(b x+c)+d
$$

by starting with the graph of $y=f(x)$ and transforming each point as follows.

Horizontally, subtract c from each x-coordinate and then divide by b. So $x \mapsto(x-c) / b$.
This moves each point left c (or right if $\mathrm{c}<0$). It then either shrinks horizontally (if |b|>1) or stretches horizontally (if $0<|\mathrm{b}|<1$). If $\mathrm{b}<0$, there is also a horizontal reflection, in the y-axis.

Vertically, multiply each y-coordinate by a and then add d. So $y \mapsto a y+d$.
This either stretches vertically (if $|a|>1$) or shrinks vertically (if $0<|a|<1$). If $a<0$, there is also a vertical reflection, in the x-axis. The point then moves up d (or down if $\mathrm{d}<0$).

In the questions below, the graph of $y=f(x)$ has two turning points, at $(2,-5)$ and $(6,3)$. State the coordinates of the related turning points on each of the following graphs.

Q1 Vertical transformations:
a) $y=f(x)+2$
b) $y=f(x)-1$
c) $y=3 f(x)$
d) $y=\frac{1}{2} f(x)$
e) $y=-2 f(x)$
f) $y=-\frac{2}{3} f(x)$
g) $y=2 f(x)+1$
h) $y=-4 f(x)-5$
i) $y=6-f(x)$

Q2 Horizontal transformations:
a) $y=f(2 x)$
b) $y=f(-3 x)$
c) $y=f(x+2)$
d) $y=f(x-1)$
e) $y=f(2 x+1)$
f) $y=f\left(\frac{1}{2} x-2\right)$
g) $y=f(-x+4)$
h) $y=f(-2 x+3)$
i) $y=f\left(-\frac{4}{3} x-1\right)$

Q3 Two-dimensional transformations:
a) $y=2 f(x-3)$
b) $y=f(2 x)+4$
c) $y=3 f(4 x)$
d) $y=-\frac{1}{2} f(-2 x)$
e) $y=2-f(x+4)$
f) $y=f\left(\frac{1}{3} x+5\right)+4$
g) $y=-2 f(x+1)-3$
h) $y=3 f\left(\frac{1}{2} x\right)-1$
i) $y=3 f(7-x)$
j) $y=2 f\left(\frac{1}{2} x+1\right)-5$
k) $y=3 f(2 x-4)+1$
I) $y=-2 f\left(-\frac{3}{4} x+2\right)-2$

