Higher Maths: Graph Transformations

We can obtain the graph of

y = af(bx + c) + d

by starting with the graph of y = f(x) and transforming each point as follows.

Horizontally, subtract c from each x-coordinate and then divide by b. So $x \mapsto (x - c)/b$.

This moves each point left c (or right if c < 0). It then either shrinks horizontally (if |b| > 1) or stretches horizontally (if 0 < |b| < 1). If b < 0, there is also a horizontal reflection, in the *y*-axis.

Vertically, multiply each *y*-coordinate by a and then add d. So $y \mapsto ay + d$.

This either stretches vertically (if |a| > 1) or shrinks vertically (if 0 < |a| < 1). If a < 0, there is also a vertical reflection, in the *x*-axis. The point then moves up d (or down if d < 0).

In the questions below, the graph of y = f(x) has two turning points, at (2, -5) and (6, 3). State the coordinates of the related turning points on each of the following graphs.

Q1 Vertical transformations:

Study this note

a)	y = f(x) + 2	b)	y = f(x) - 1	c)	y = 3f(x)
d)	$y = \frac{1}{2}f(x)$	e)	y = -2f(x)	f)	$y=-\tfrac{2}{3}f(x)$

g) y = 2f(x) + 1**h**) y = -4f(x) - 5**i**) y = 6 - f(x)

Q2 Horizontal transformations:

a)	y = f(2x)	b) $y = f(-3x)$	c)	y = f(x + 2)
d)	y = f(x - 1)	e) $y = f(2x + 1)$	f)	$y = f(\frac{1}{2}x - 2)$

- **g**) y = f(-x + 4) **h**) y = f(-2x + 3)**i**) $y = f(-\frac{4}{3}x - 1)$
- **Q3** Two-dimensional transformations:

a)	y = 2f(x - 3)	b)	y = f(2x) + 4	c)	$y = \Im f(4x)$
d)	$y = -\frac{1}{2}f(-2x)$	e)	y=2-f(x+4)	f)	$y = f(\frac{1}{3}x + 5) + 4$
g)	y = -2f(x+1) - 3	h)	$y = 3f(\frac{1}{2}x) - 1$	i)	y=3f(7-x)
j)	$y = 2f(\frac{1}{2}x + 1) - 5$	k)	y=3f(2x-4)+1	I)	$y = -2f(-\frac{3}{4}x + 2) - 2$